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SUMMAR¥

This monograph summarizes the gas dynamics of high-speed guns,
utilizing a gas of low molecular weight at high temperature. Theory
and test results are presented. The reader Is assumed to be an advanced
student in engineering. The fundamental ideas and equations are fully
developed.
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NOTATION

AA1 ,Ai cross-sectional area o• barrel

AAc cross-sectional area of chamber

a sound speed

aRe sound speed of the gas at xo

b covolume

DD 1  diameter of barrel

DO diameter of chamber

f oovolume in semi-empirical entropio equation (66-1)

9 internal energy of a system in general

F frictional force per unit mass at wall on gas layer due to boundary layer

G mass of propellant gas in a PP Gun, or mass of gas in barrel of constant
base pressure gun

0mass of gas in back chamber of a two-stage gun

H Lagrangian coordinate defined as fp dx

h enthalpy

L barrel length

m molecular weight

M projectile mass

mass of piston in pump tube of two-stage gun

n number of moles, or exponent in empirically fitted isentropic equation

PP Gun preburned propellant gun

PPIO Gun preburned propellant gun with an ideal gas propellant

p pressure

spacial average pressure

Q b~eat transfer per unit mass to gas layer

ix.
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UIII Velo Nab M UUIIbLtUJ

R gas constant for a mole of a particular gas (equals R/m)

a entropy

t time coordinate

T temperature

U internal energy of a system independent of motion, gravity, capillarity,

electricity, end magnetism

u velocity

uo velocity of a projectile propelled by a constant pressure (pc)

U p projectile velocity

AUP increase of projectile velocity due to ohmmbrage

AUp • increase of projectile velocity due to infinite chambrage

Up 1st velocity of projectile when first wave reflected from breech reaches it

Uesc escape velocity

u projectile velocity with boundary layer and friction effects
Pf

u pf.0 projectile velocity without boundary layer and friction effects

u PIprojectile vwlocity when there is gas in front of the projectile

up projectile velocity when there is no gas in front of the projectile

V projectile velocity at muzzle

v specific volume

x distance coordinate

xp positioil of projectile

xo length of chamber in PP gun

g0e the x coordinate of characteristic line at t = 0 in the gas in a

constant base pressure gun

value of acceleration of gas and projectile in the constant base pressure
gun equal to P0A,/M



traction o0 additional gas particles, used in thermai equation:
p = p(i + Z)RT

M constant in van der Waals equation of state which accounts for the
attractive forces between molecules

parameter which is exponent of semi-empirical entropic equation of state

(Equation (66-1))

y ratio of specific heats

Sdefined as (up + ap - Co0)/Qo- (see Equation (24-3)), used in p-u relation

for chambered xo = 0 , PPIG Gun

K parameter which occurs in semi-empirical equaticii (Equation (66-1))

the x coordinate on a characteristic line in the gas of a constant base

pressure gun

p density

SRiemann Function defined from do-r (dp/ap),

7' the t coordinate on a characteristic line in the gas of a constant base
pressure gun

Subscripts

o denotes position in chamber at entrance to transition section

f denotes gas directly in front of projectile

g denotes gas directly behind shook in barrel

i denotes position in barrel at exit of transition section

p refers to gas directly behind the projectile or to the projectile

0 refers to initial state of gas in chamber of PP gun, or to conditions

behind projectile in a constant base pressure gun

00 refers to position on characteristic at t = 0 in gas of constant base

pressure gun

1 denotes initial state of gas in barrel in front of projectile or state
of gas in front of shock

2 denotes state of gas beaind shook

xi



denotes sonic conditions

**denotes time when gas becomes sonic at the x 0 position in a constant

base pressure gun

Other Symbols

D denotes time rate of change of a quantity when traveling with the velocity

Dt of a disturbance (u i a); thus

D -a 'a•

E 7 u± .

Dt t Zx

d denotes time rate of change of a quantity when traveling with the velocity

dt of a gas particle (u); thus

d
dt +t ux

Bars over quantities denote nondimensional quantities; defined in text.

Ideal gas - a gas described by the equations pv RT and pvy constant,

xii.



PART I. INTRODUCTORY REMARKS

Section 1

Purpose of Monograph

In the year 1945, after 700 years of shooting guns, the maximum velocity of
projectiles was 10,000 ft/sec. However, within the past 20 years projectile
velocities obtained from guns have risen spectacularly to a value of 37,060 ft/sec.*
This surprisingly large gain in velocity during a relatively short period of time
was the result of a vigorous effort pursued to make possible the study of hypervelocity
phenomena in the laboratory. The increase in projectile velocity was a reflection of
the increase in our knowledge of the interior ballistics process; the increase in
knowledge still continues, and, coupled with our advancing technology, gives promise
of effecting in the next 20 years equally large projectile velocity increases.
Projectile velocities of 60,000 ft/sec by 1985 seem not only possible but probable.

What is the extent of our knowledge of interior ballistics which made possible the
startlingly large gain in projectile velocity? This monograph will address itself to
answering this query. It will summarize our understanding of the gas dynamics of
high-speed guns, those firing projectiles above 10,000 ft/sec. As is now well
known, in order to achieve high speeds, a gun must use a hot "light gas" as a
propellant, that is, a gas of low molecular weight at high temperature. This require-
ment for a hot light gas propellant becomes obvious from the interior ballistics theory
as unfolded below,

The reader is assumed not to be an expert in the field of interior ballistics, but
is assumed to be a graduate student in engineering. Consequently, the fundamental
ideas and equations are rather fully presented; thus, included in some detail Jn the
main text and appendices are explanations of the method of characteristics. Included
also are methods for calculating gun performance which have now become unnecessary
because of the use of electronic computing machines; nevertheless, these methods aid
in the understanding of the interior ballistics. It is hoped that the more knowledge-
able reader will adjust to the inclusion of much elementary material and to the
repetitious style used for clarity.

Section 2

The Basic Requirements for a High-Speed Gun

The basic factors determining the speed of a projectile propelled from a gun may be
simply obtained by applying Newton's force equation to the projectile, Schematically,
the projectile, during its travel in the gun barrel, may be represented as in the sketch
on the following page.

* NASA, Ames Research Center (April 1965).
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Barrel of cross-

_sectional area4 AO

P
P

Sx P 
L

The projectile mass is denoted by M , the length of barrel by L , and the cross-
sectional area of the barrel by A . The propellant pressure at the back end of the
projectile is denoted by the letter pp . At any instant of time Newton's Law

applied to the projectile yieldsm

Mt ul = - pA (2-1)',M MU= - p
dt dxp

where u is the instantaneous projectile velocity and x is the corresponding

distance ltraveled by the projectile.

If Equation (2-1) is integrated, it becomes

MVI/2 A LJ Pdzx (2-2)

where V is the muzzle velocity of the projectile. With V , the spatial average

prnpelling pressure, defined as

I •L
r pp dxp (2-3)

Iii, projectile velocity becomes

7W1 V V^20 A LX (2-4)

This result, Equatio.4 (2-4), indicates essentially the factors upon which the
projectile velocity depends, To increase the projectile velocity, one must increase
the value of the quantities under the square root sign. Thus, the one step in
achieving a higher projectile velocity is to change the sizes of the projectile and
barrel so as to increase the value of AL/M ; this requires, for a given cross-
sectional area A of the barrel, that M be made smaller and L larger.
(Note that if a gun is made larger by geometrically scaling it, AL/M remains the
same.) However, practicality limits these changes, for M may be made only so
small for a given barrel diameter and L may be made only so large (as frictional

and gas dynamic effects lower ý substantially if the barrel is too long - see below).

* For purposes of this discussion, the air pressure in front of the projectile and the frictional

force acting on the projectile have been assumed negligible.
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Unfortunately, after having made AL/M as large as practical, it is found with a
conventional propellant gun that the projectile velocity is still much below that

desired.

From the above considerations one is led to the conclusion that after AL/M is
made as large as practical, the only method of achieving high velocity is to increase

the average propelling pressure P .

The reason for the difficulty in obtaining a high average pressure in the case of a
gun using a conventional powder propellant is illustrated by the following sketch.

P

X

Here the pressure behind the projectile in the conventional gun is plotted as a

function of its travel. The rise in pressure from zero to the peak pressure pM
results from the burning of the propellant; as will bb shown below, the rapid pressure

decrease thereafter results mainly from the propellant inertia as the propellant gas
accelerates to push the projectile, It is evident from the sketch that the average
pressure F is considerably below the peak pressure pM for the conventional
propellant.

Of course, increasing the amount of propellant in the chamber would increase pm
and thus 6 , but the strength of the gun limits the value of pm . By using the
maximum amount of conventional gunpowder which may be contained even by specially
strengthened guns, velocities of about 12,000 ft/sec have been reached with low mass
projectiles. This velocity is about the maximum achievable with the conventional
propellant gun system.

theAs indicated in the preceding paragraph, there is obviously a practical limit to
the strength of the parts of a gun. The main parts of a gun system are (a) the
projectile, (b) the barrel, and (c) the gun chamber or chambers. The values of
stresses experienced by each of these components is dependent on the pressure pulse

to which it is subjected. (The rato of pressure application, as well rs the value
of the peak pressure, determines the stresbes experienced,) In riactice, the chambers

and barrels of guns may be designed to withstand static pressures up to about
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130,000 lb/in 2 without being permanently deformed; a rugged projectile, similarly,
may be designed to withstand 130,000 lb/in', whereas a fragile projectile may only
withstand, perhaps, 250,000 lb/in Parts which are expendable may be designed to
deform but not rupture at transient preRtAIMR em high aR 1,000, 0o lbh/in 2 .

This discussion points to the main requirement in achieving a high projectile
velocity after having mace AI/M as large as possible: the requirement of obtaining
a high average pressure 0 behind a projectile, while at the same time limiting the
pressure rise in all parts of the gun system so as not to cause unacceptable damage
to the parts.

Section 3

The Velocity Attainable by Use of a

Constant Base Pressure Propellant

For a gun of given geometry propelling a given projectile, the quantities A , L
and M are fixed. For this gun system there is a maximum allowable pressure p 0
which the projectile can sustain, Under idealized circumstances one could hope that
'he pressure of the propellant propelling the projectile would be constant and equalto p, during the entire projectile travel. (Thus, po=P = a constant,) Thissituation is shown in the following sketch.

top drn th niepoetietae. (hs ,p
0 aconstan, ) Thi

P

L -- _ __

* Instead of the streas capability of the projectile, one may discuss the acceleration
capability, The latter description may, be more pertinent if the projectile carries "a"
limited payloads.
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Such an imagined propellant, whose propelling pressure would be maintained at a
uuituMant vaiue, is Known as a "constant base pressure propellant" or "constant pressure
propellant". In this case the projectile velocity attained would be the maximum
attainable velocity or the given gun system. Thin velocity, denoted as u 0 , is
easily calculated by applying Newton's Law to the projectile. Thuso

du dup
= Mu pA =PA (3-1)

dt = dxp

which, when integrated along the barrel length, yields

2PEAL
u0 = - (3-2)

M

The first calculation one should make for a given gun when attempting to assess its
possibilities of attaining high velocity is the calculetion of uo : for uo is the

highest velocity attainable.

If, for example, a sphere is chosen as the projectile, u 0 becomes

= 2po(7D2/4)L SID)0 (L` )3
M T7DI/6)Pp D

where pp is the density of the projectile. Thus, for a very light projectile such

as a nylon sphere (pp = 1.2 g/om3 ) in a gun with a long barrel (L/D = 300), with
PO 0  100,000 lb/in 2 (a relatively high pressure), Equation (3-3) yields uo = 75,000
ft/seo.

•br the same gun with p 0 = 30,000 lb/in2 , uo is calculated to be 42,00n ft/sec.

It becomes obvious that, even in the idealized case of a constant propelling
pressure, one needs for high velocity extremely long guns, high pressures, and low
projectile masses; these needs are even more pronounced in the actual case where
the average propelling pressure is much below the peak pressure, Thus, the quest for'
a high velocity gun becomes a quest for a propellant which will maintain the propelling
pressure at a high value.

* Here, for the purpose of obtaining the maximum attainable velocity, the friction on the
projectile and air pressure in front of it are assumed negligible.
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Section 4

Description of the Preburned Propellant Gun

In this section will be considered the gun system in which the propellant has been
completely reacted before the projectile is allowed to move. This gun system is termed
a "Preburned Propellant" Gun and designated as a PP Gun. The gun is visualized as
consisting of a chamber of diameter D0 joined by means of a transition section to a
barrel of diameter D, , The projectile is positioned initially so that its back end
is at the beginning of the barrel section. Immediately before the projectile begins
to move, the reacted propellant produces in the chamber a gas at an initial and peak

pressure p0  and sound speed a 0  temperature T0 , etc. (See the following sketch.)

Gradual or Abrupt
Reacted Propellant Transition Section

TT
,. - - Cihamber

When the chamber diameter is greater than the barrel diameter (D. /f 1 > 1) the gun
is described as a "chambered" gun, or a gun with "chambrage", When the chamber
diameter is equal to that at the barrel, the gun is described as "having no chambrage",
or as a "constant diameter gun".

In practice a preburned propellant gun may employ a diaphragm to separate the
propellant in the chamber from'the projectile; this diaphragm is ruptured when the

propellant has completed its reaction, Another possibility is the use of a "shear
disc" around the projectile ituelf which shears when the reaction has been completed.
One type of a preburned propellant gun is that which uses as a propellant a non-
reacting gas (such as compressed helium).

In a preburned propellant gun the projectile is restricted from movement until the
pressure has reached a peak value; it will be shown below that, after the projectile
is released, the pressure behind the projectile decreases as the projectile increases
in velocity and moves along the barrel. (See the following sketch.)



p up
pX P

o p

0I

xp .. Up ,.-0

The attainment of high velocity in this case requires that the pressure decrease be
minimized; for maximum velocity one would wish for the oonstant pressure propellant
previously mentioned which would maintain its pressure at the peak value pc behind
the projectile durang the projectile's entire travel.,

If the pressure behind the projectile were maintained at the initial peak value
Do , the velocity in this idealized case is as calculated in Equation (3-2),

u0 = 2pAL/M

In practice a velocity equal to the velocity u0 for the preburned propellant gun is
unattainable, this is a consequence of the fact that in such a gun, as will be shown
below, the pressure behind the projectile inevitably must drop as the projectile
velocity increases; unfortunately, the greater the projectile velocity, the greater
will be the drop. m

Section 5

A 4ualitative Description of the Pressure Disturbances
Occurring During Firing of a Preburned Propellant Gun

When the projectile in a gun begins to move, it momentarily leaves a slightly
evacuated or a lower pressure space behind it. The layer* of gas that was initially
behind the projectile quickly movws (an infinitessimal amount) toward the projectile

The gas is imagined to be composed of thin layers or discs of gas which are perpendicular
to the axis of the gun.



IlLU Ljii evacuatLd space. secause tnere lE now more space available to this first
gas layer, its pressure drops. The layer of gas immediately behind the first layer of
gas then, likewise, finds itself next to a slightly evacuated space (as a resuilt of
the first layer's motion) and so it likewise moves into the evacuated space, Similarly,
each successive layer in turn moves into the space in front of it which has been Just
previously evacuated, This progression of successive movement is a disturbance in the

gas which proceeds at the speed of sound, Since this disturbance is characterized by
the fact that it decreases the pressure and density of the gas through which it passes,
it is termed a rarefaction disturbance. (Other names for the disturbance are impulse,
wave, wavelet, or pulse; the adjective "acoustic" o, "sound" is often put in front of

these terms.)

It is seen that the pressure drop aRcompanyitig the disturbance results from the fact
that the projectile has accelerated and in turn each layer of gas haR been accelerated.
The quantitative value for this pressure drop from the accelerating projectile motion
is given below, Qualitatively, the more quickly each la.er of gas muves into its
neighbor's evacuated space, the less is the pressure drop and the better able is the
gas to push on the propellant, Thus, a good propellant gas would be one of low
"inertia" in this process of successive movement, t

During the entire movement of the projectile in the barrel, the projectile continues
to produce these rarefactions which travel toward the breech at the local velocity
of sound of the propellant gas, Consequently, the pressure of each layer of the gas
behind the projectile drops continuously as the projectile accelerates toward the

muzzle: in particular, the pressure of the gas layer directly behind the projectile
drops the most, since all of the rarefactions first travel through this gas layer,

In a gun with no chambrage, i.e., a constant cross-sectional area gun, each layer
of gas similarly moves into the space vacated by its front neighbor until the layer
of gas next to the breech begins to move forward. The breech layer then begins to
move into the space vacated by its neighbor, but there is no neighbor behind it to
fill up the space it is vacating; therefore, it is retarded in its motion and by so
doing leaves the space ahead into.which it is moving somewhat evacuated. The neighbor
in front of the breech layer feels this slightly evacuated space behind it and so it
is retarded in its forward motion; this retardation of each neighbor in turn proceeds
toward the projectile, resulting in a progression of a rarefaction disturbance which
travels from the breech end toward the projectile end.

$ It is shown below that the quantitative expression for the gas inertia is "ap"; for an ideal
igas ap is Inversely proportional to the initial sound speed for a given initial pressure
Equation (11-3).
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M- ... ... ,=CC, .. cli tl.Uii t•tj 6 Utiuu& end, is termea a "retlectec" rare-
faction and is a result of the fact that there is a breech end. All of the rarefactiowi
produced by the projectile reflect from the breech in this manner; they travel toward
the projectile, transmitting the information to the gas and the projectile that there
is a limited quantity of gas to fill the evacuated spaces. These reflected rarefactiotr;
lower the pressure of the gas through which they travel further than if there had been
no breech. In particular, when these reflected rarefactions reach the back end of the
projectile, they lower the pressure behind the projectile; consequently, the projectile,
velocity is not as large as it would have been if these reflected rarefactions had not
reached the projectile.

A more complex phenomenon occurs in a gun with chambrage. In such a gun, as a
rarefaction traveling in the barrel toward the breech reaches the increasing area
section, the evacuated space is filled by gas flowing from a larger volume layer;
consequently, the pressure in the space is raised to higher value than if the gas had
moved from the constant diameter smaller bore layer. In turn, each layer of gas in
the transition section leaps into the space evacuated by the layer in front of it and
each tends to raise the pressure a little more than if they had been gas layers of the

same diameter as the bore. In effect, therefore, the rarefaction impulses which are
produced from the back of the moving projectile when they come to the change of area

of the transition section are partially reflected as compression disturbances: these

compression impulses travel toward the projectile. Upon reaching the projectile they
raise the pressure behind the projectile, and therefore the projectile velocity, to a
value above that of a gun with no chambrage. Thus, the rarefactions produced by the
projectile in a chambered gun upon reaching the change of area section are 1,artially

\. *if".cted as compresion impulses and partially transmitted as rarefactions. The
S- trbs smitted rarefactions continue their travel toward the breech still as rnrefactiuis;
,at the breech they are reflected again as rarefactions and, at the transition section

of.area decrease, a portion is reflected as a rarefaction and the remaining portion
continues its travel toward the projectile as a rarefaction. This sequence of events
continues as the projectile moves along the barrel.

In summary, changes in pressure of the gas behind the projectile occurring in a
preburned propellant gun are these: (1) There is a drop in pressure from accelerating
projectile motion which is present during the entire projectile travol, -(2) There is
a drop in pressure caused.by rarefactions reflecting from the breech which are present
in the latter stages of the projectile motion when these reflections reach the
projectile. (3) There is a rise in pressure from the compressions reflected from the
change in area section which is present during the entire projectile motion.

SRarefactions reflected Rarefactions Fromfrom breech accelerating projectile

.............. Compressions reflected
f • from transition section
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Section 6

The Derivation of the Equations for
Disturbances Traveling in the GasW

It is apparent from the discussion in Section 5 that changes in the gas are brought
about by the acoustic disturbances which travel in both directions in the propellant

gas. Although only infinitesimal chai.ges result from the passage of each disturbance,
finite changes result from the passage of a multitude of these disturbances. Let the
changes wrought by a single infinitesimal disturbance traveling with velocity D into
a differential layer of gas in a constant diameter tube be examined. Let this layer
before the passage of the disturbance have a pressure p , a density p , and gas
velocity u ; after the disturbance passes the layer, these quantities are increased
by differential amounts as shown in the following sketch.

disturbanc.e D
p + dpI "/t.Y pXz P P(, t
u + du IV u,•,)u = u (x,t t t t

Gas Layer

+ du 't t + dt

As indicated in the sketch, the layer of &%s to be examined is traversed by the

disturbance in time dt . Thus, it is initially (D-u)dt long, and after passage
of the disturbance it is (D-u-du)dt long, as may be discerned from the next sketch.

D

p + dp - p =t

Ddt - d-L,°+ .AL, ,.du--t D

p + dp :FIP t=t+d

* See Appendix B for an alternate derivation.



The mass of gas is therefore expressible in terms of the gas layer's length before
or after traversal by the disturbance wave; hence

A(D - u)pdt = A(D - u - du)dt (p + dp) (6-1)

where A is the cross-sectional area of the tube.

During the entire time of passage of the disturbance wave a pressure of value
p + dp acts on the left end of the layer, while, a pressure of value p acts in the
opposite direction on' the right end of the layer. Thus, the net pressure acting on
the layer is dp . The acceleration of the layer is the velocity change du experienced
by it divided by the elapsed time dt . Thus, Newton's Law applied to the layer is

du

Adp A=o(D - u)dt d- (6-2)

net force mass acceleration

If du is eliminated from Equations (6-1) and (6-2), one obtains

(V U) 2 = dp.

(- • (6-3)
dp

The assumption is here made that the infinitesimal changes which occur during the
passage of t!e disturbance are isentrupic (that is, reversible and adiabatic); thus,
the right hand side of Equation (6-3) is the square of the sound speed of the gas, a 2,

Equation (6-3) becomes

D-u= a
or

D=u+a (6-4)

This disturbance is thus found to travel with the speed of sound relative to the gas.
Equations (6-2) and (6-4) may be combined to give

dp = aodu . (6-5)

This is the fundamental expression for the pressure change across a "u + a"

disturbance wave.

In a similar manner a disturbance traveling upstream could be analyzed. Such a
disturbance is shown in the following sketch.

D

p p+dp
u (x,t)--- U -u + du

p p+dd=P
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dp s-o~xu

across a "u - a" disturbance.

By examining the above equations one may determine the significant propellant gas
property which governs the magnitude of the pressure change due to the passage of a
disturbance in a constant diameter tube, Equations (6-5) and (6-6) may be rewritten
as

dp = (asdt) (du/dt) } (6-7)
dp = -(apdt) (du/dt)

for the pressure change across a downstream and upstream disturbance wave, respectively.
The quantity "ad' , the gas acoustic impedance or acoustic inertia, is the mass per
unit time traversed by a disturbance wave: it is thus properly identified as the inertia
of the propellant gas.

For small ap , the pressure change will be small to effect a given velocity change;

for large ap , the pressure change must be large to effect a given velocity change.
Thus, the acoustic inertia ap of the gas is seen to be the fundamental gas property
which determines the magnitude of pressure changes required to produce given velocity
changes. It will be discussed further in Section 9.

For convenience, Equations (6-5) and (6-6) are usually rewritten in terms of changes
which occur when traveling with or along the disturbance rather than those which occur
when traveling across the disturbance, Hence, since the change across a "u + a"
disturbance equals the change along a "u - a" disturbance, and vice versa, Equations
(6-5) and (6-6) become

dp + apdu - 0 (6-8)

along a Iu + a" disturbance path,

dp - apdu = 0 (6-9)

along a "u - a" disturbance path.

These equations are known as the ohareml.eristic equations; they permit a numerical
solution to the interior ballistics qro•'•ý,• in the case of a gas flowing isentropioally
in a constant diameter tube. This j, : 4 i.- possible because the infinitesimal
changes described in Equations (6-81 ., -. , result in the finite changes which
occur in the gas.
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Section 7

Summary of Equations Applicable to an Isentropic

Gas Expansion in a Constant Cross-Sectional Area Tube

The meaning of the equations in Section 6, which apply to a gas which expands in a
constant crosB-sectional area tube is discussed in Appendix C; the equations are
derived in a more rigorous fashion in Appendix B. It is assumed there that the gas
expansion is one-dimensional. Further, it is assumed that the flow is adiabatic and
reversible (isentropic), that is, that friction and heat-transfer effects within the
gas are negligible. (The irreversible effects are discussed in Part VIII.) These

assumptions have been shown to be a good approximation" 2 and permit a relatively
simple solution to the interior ballistics problem.

In Appendix B the one-dimensional momentum and continuity equations applied to a
layer of gas isentropically expanding in a constant diameter tube are transformed into

the characteristic equations. These equations are there written in terms of the
"Riemann Function" a , defined as

do, w (dp/ap), ' (7-1)

They are

du + do- = 0 (7-2)

along the path of a characteristic line of slope dx/dt = u + a and

du -dr = 0 (7-3)

along the path of a characteristic line of slope dx/dt = u - a . The u + a and
u - a characteristic lines are thus the paths of disturbances. These equations are
the same as derived in the previous section. For consciseness they may be written
as (see Appendices A and C):

D
t(u 1cr) = 0Ut

Equations (7-2) and (7-3) may be integrated to yield

u + o is constant (7-4)

along the path of a disturbance traveling with speed u + a = dx/dt and

u - a- is constant (7-5)

along the path of a disturbance traveling with speed u - a = dx/dt.



'rne two sets of characteristic lines (disturbances) may be drawn in the xt-plane,
As explained in Appendix C, the u ± a characteristic lines have a slope equal to
u ± a in this plane. Alnne each u ±a characteristic line Wie quantity u ± o-
remains constant.

u+0
U+ a

DISTURBANCE 

d1'r
-u DISTURBANCE Cedt U+

t-

The characteristic Equations (7-4) and (7-5) may be applied to the gas expansion in
any constant diameter tube (e.g., in the gun barrel or in the gun chamber) as
demonstrated in the sections below. In particular, these equations, together with
the gas equation of state, may be directly applied to a constant diameter gun,

in general, the solution of these eQUations is effected numerically by progressively
solving for conditions at the intersections of the u + a with u - a characteristics
(see Appendix C and Appendix E), In special oases a numerical solution is unnecessary
and the characteristic equations may be solved analytically.4

Section 8

The Characteristic Equations for the Effectively
Infinite Length Chamber, D.D = 1, PP Gun

A preburned propellant gun having a constant diameter chamber joined to a barrel of
the same diameter is considered, Before the projectile has begun to move the gun
appears as in the following sketch,

Chamber Barrel

D Preburned 00 P,
0 Propellant PO p
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Equation Do/D= 1 Equations (7-3) and (7-4) may be applied to such a gun,

When the projectile motion begins, a rarefaction disturbance is sent back with
the speed of sound (ao) into the gas behind it. The path of this disturbance is
shown as the line A-B-C in the following sketch.*

L

XP

Dw

xo-- ,

This disturbance reaches the back end at C and reflects, The reflected disturbance
is shown as C-D-E in the sketch, An explained in Appendix D, the region A-C-E-A
is known as a "simple wave" region. Becagse no reflected disturbance reaches this
region, the entire region is described by the equation

du + do, = 0

or equivalently

du + dp/ao 0 (8-i)

This becomes upon integration

u + fdp/sp 0 (8-2)

or in terms of o7,

u +- o •o p-3)

where u is taken to be equal to zero at p: p0  and o '

A gun whose chamber length x0 is sufficiently long so that the first reflected
wave C-D-E does not reach the projectile before it reaches the end of the barrel is

termed as "infinite chamber length gun" or an "effectively infinite chamber length gun",

* Usually in an x-t plot, as in the sketch, the projectile path is drawn as a single line
which actually represents the path of the back end of the projectile.
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a gun is unaffected by the presence of the back or breech end; the projectile

performance is the same as it would be In a gun whose chamber length were truly

infinite. Thus, the gas behind the projectile In an Infinite chamber length gun is

characterized by Equations (8-1). (8-2), and (8-3).

Section 9

Role of the Acoustic Inertia in the

Do/D 1 = 1, xo = 0, PP Gun

In Section 6 it was noted that, for the expansion of a gas in a tube, the acoustic

impedance ap plays the role of the inertia of the gas, For the x0 - 00, Do/D, = 1 ,

PP Gun the acoustic impedance may be directly related to the pressure drop behind the

projectile.

Thus, Equation (8-1) describes any part of the gas behind the projectile in an

x0 = 00, Do/D 1 = 1 gun; it may be rewritten as

dp = -*du (-'

(This is In contrast to the situation in a PP gun which has Do/D 1 = I and

X0 not equal to w, for then Equation (9-1) only applies to "u + a" disturbances.)

From Equation (9-1) it is apparent that, when the velocity increases behind the

projectile, the pressure decreases. Moreover, Equation (9-1) indicates that the drop

in pressure for a given velocity increase is directly proportional to aP . Thus,

in this unsteady expansion process the measure of the propelling gas inertia is ap

the drop in the pressure of the propelling gas (and, in particular, of the gas

directly behind the projectile) is a direct result of the gas inertia ap (and an

inevitable result unless mp can be made zero).

Equation (9-1) may be integrated to yield for the DO/D 1 *:1 , x0 = co, PP gun the
velocity of the gas at any point in the flow

DO dp

u =I - . (9-2)
pap

It is seen that the velocity of the gas expanding from rest at initial pressure p0
In a DO/D , x0 = (m PP gun depends only on the acoustic impedance as a function
of pressure for the isentrope,

For a DO/D1 1, xo= co, PP gun the relationship between ap and p determines the
entire propellant performance,
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The Equation for the Projectile

By application of Newton's Law to the projectile one obtains

du =
M dt pp (10-i)

where pV is the pressure directly behind the projectile ind u is the velocity of
the projectile. The barrel is here assumed evacuated and the ctional forces on the
projectile ore assumed negligible,

Section 1U

The Equations for an Ideal Propellant Woa in a
PP'Gun With Do/Dt = 1, x0 = O

The words "PPIG Gun" designating "Preburned Propellant Ideal Gas (kn" refer to a
PP Gun with an ideal gas propellant.

An ideal (or perfect) gas is here defined by the following thermal and isentropic

equations. (See Appendix J)

p =pt (11-i)

p = pp/po 0O (11-2)

where the subscript "0" indicates the Initial rest state from which the gas
expands, The acoustic impedance beoumes, for the isentrope

apa = Do 
/JFT ~ ~ ~ P 0 (.6 , ' Yo (

The souýd velocity may be expressed for the ideal gas ius

a -I/ VR 21 l/T (11-4)
p m

and the Riomann function is calculated to be

2' - a (li-B)
a -1

where o, is taken to be 7ero at a 0



The gun is shuwn in the following sketch just before the projectile is reieasea.

S°'Do0 Pot POO aoly Pl =o,

L--* 
o

"" ... . L r

Do/ 00

From Equations (8-2) and (11-3) the pressure may be related to the velocity for the
expansion of the ideal gas in a constant diameter gun

S Y .Il .8
Do T

In the limit of y I this equation assumes the form

- "u/Ro (11-7)
p 0

Equation (11-6) in the pressure-veiooity (p-u) relationship for an ideal gas
"expanding 'in a D[/D 1, xI = co, pP n. It is an important equation in that it
provides an insight into the factors determining the value of the propelling pressure.
It applies to each part of the expanding gas; in particular, it applies to the gas
behind the projectile,

Immediately apparent from Equation (11-6) is the fact that the magnitude of the
dimensionless pressure p/p 0 primarily depends on the magnitude of the dimensionless
velooity u/a 0 ., For low speed guns, in which u/a0 << 1, p/p 0  is nearly one, and
the pressure drop is negligible, For high speed guns, the drop is seen to be
deviatating.

The effect of / oil the pressure drop is evident from the plot of Equation (11-6)
for varying 7 . This plot is shown in Figure 1 and in the upper sketch on the
following page. It is noted from the plot that the lower the 7 the less is the
pressure drop, but the pressure drop is still present even when y is equal to one.

As indicated before, of greater influence on the pressure drop is the gas initial
sound speed ao , This is apparent if a plot of p versus u is made from
fquation (11-8) for various initial sound speeds. Such a plot is shown in the
lower sketch on the following page.
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SPPI oo Gun , DoD1 1
P

•• Y=1.4
S)e =5/A u

a
0

Infinite a

T For constant
Value of Y'

P 0.

The higher the initial sPund speed, the lower is the pressure drop, (This oonclusion
coiuld have been arrived at by noting from Equation (11-3) that the acoustic impedance
(which determines the presmure drop) of the ideal gas in inversely proportional to
the initial sound speed,) Thus, for an ideal gas expanding in a DO/Dj - 1, x0 = 0,
PP Gun, a gas with a high initial sound speed is required to minimize the pressure
drop, If the initial sound speed is infinite, there I's no drop in the pressure of the
ga as its velocity increases.

It is seen from Equation (11-6) that the pressure drops to a value of zero .when the
gao velocity reaches a value of 2&0/(y -l)*, Th.!a velocity is termed the "esocap
velocity",

2
U ec -- 1 a0  (11-8)

for a DO/D 1  1, xo = , ideal gas expansion in a PP Gun. A gas, upon expanding
to this velocity, can push no more since its pressure ha,. dropped to zero. The
escape velocity is one measure of the merit of a propellant gas; however, from
Equation (11-6), which may be rewritten as

For the limiting case of a y m 1 mas, this quantity the "escape velocity", is infinite, as
may be seen from Equation (11-7) or (li-B).
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2Y

-- = -•(Ii-9)Pc uesc)

it is seen that p/p 0  depends on 'y as well as usa0 .

More insight into the relative roles of the propellant gas initial sound speed and
specific heat ratio is provided by platting p/p 0  from Equation (11-6) as a function
of ao/yu . This plot is shown in Figure 2 and in the folldwing sketch.

T
P

.yu

Thim plot is nearly a single curve for all y values* with the equation

P e-VU/ao

approximating all the y curves, Hence, the pressure drop occurring at a given
velocity may be thought of as'depending essentially on the parameter a&/-/ : the
greater this parameter, the less is the pressure drop for a Do/D 1 = 1, x0 = co , PPIG
Gun.

Since an increase in the gas initial sound speed is more effective and is more
easily effeoted than a decrease in the specific heat ratio, a propellant gas with a
high a0 has been sought. Ayr the ideal gas the sound speed is proportional to the
square root of the temperature divided by the molecular weight. Thus, by the above
considerations of the preburned propellant D /D1 = 1, x0 = Co , gun one is led tn use
as a propellant gas a low molecular weight gas, such as hydrogen or holium at
elevated temperatures.

* That this plot should be nearly a single curve results from tha fact that a weriss expansion
of Squation (11-6) reveals a dependence of p/pc only on yu/a 0 for low values of vul/a0
and from the fact that. at high values of ),u/a 0 , P/p0  becomes zero at values of g
which are nearly the same. Also note that, for au Ideal gas

\ '.= p py

of10  d (P.
the integral of which is only weatkly dependent on Y
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Section 12

The Equation& for the Motion of the Projectile
Propelled in a Do/D, = 1, x0 = cc, PPIG Gun

The behavior of a projectile propelled by an ideal gas in a Do/D 1  1, x0 = ,
PP Gun may be obtained by inserting the expression for the gas pressure (Equation
(11-6)) into Newton's Law for the projectile (Equation (10-1)). If this is done, and
the integration performed, an analytic expression is obtained for the distance
traveled by the projectile as a function of the projectile velocity.

p0 A1 X 2 1 I 2ao J

0 P _

orMa 2° P0 1 1 -. 1 ( - •~(y1)](+ /(- + 11 (12-,'

or

M°Alx eUV/a(U 1) +1 (12-2)Ma 2

for a y 1 gas. (See References 3, 4 and 5.)

Equation (12-2) is plotted for different values of ' in Figure 3 and in the
following sketch,

I [ PPIG Gun

=1.4 Do/DIu 0 1

a
0 ~# 5/3

The ordinate in this figure is a dimensionless projectile velocity, u p/ao the

abscissa is the dimensionless distance traveled by the projectile, PoA xp/Ma'

It is noted from the Equation (12-1) that, as P0 Aixp/Ma 2  becomes infinite,
up(y - 1)/2a0 approaches one, i.e., the projectile velocity approaches the eeicape
velocity, However, in practice the projectile velocity is rarely, if ever, more
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than one half the escape speed*. This is a consequence of the fact that at the high

projectile speeds the propellant pressure p becomes so low (see Equation (11-6))

that gas and projectile frictional resistance and sometimes the gas pressure in front
of the projectile, neglected here, equal the propelling gas pressure force. The

effects of friction and gas pressure in front of the projectile are discussed in

Section 40.

A most useful presentation of Equation (12-lY may be obtained by plotting the

dimensionless projectile velocity up/ue versus dimensionless initial sound speed

ao/yuo . The quantity uo , defined as V(2P0 Axp/M), is the projectile velocity

attainable if the projectile is propelled by a constant pressure p0 . This plot

is shown in Figure 4 and in the following sketch.

u X, =00
51 Do/D1 = II

00 S ao

Yu0

It is seen that this plot is nearly a single curve for all y values t .

The ordinate u/uo may be thought of as an efficiency of the propellant gas in

its ability to maintain the pressure behind the projectile at a value equal to p0
(Note: u1 /u 0 = o /p0,) It is seen that this efficiency is high for high dimensionless

sound speed and low for low dimensionless sound speed. Thus, the propelling pressure

is only maintained at a high level by an ideal propellant gas when the initial sound

speed is high.

Figure 4 illustrates the basic facts about a Do/D 1 = 1, xo = 0  , PPIG Gun. The

projectile velocity for a gun of given geometry (of given AL/M) and initial propellant

pressure p 0  is a function of essentially a,/- only. A relatively high velocity

requires a relatively high aS/y , Moreover, a high efficiency (u /u.) requires a

high value of ao/yuO or a low value of up~/ao (as seen by the inclined lines of

constant u V/a 0 in Figure 4). Since the projectile velocity mainly depends on

a,/- , the effect of a decrease in y is seen to be the same as the effect of an

increase in initial sound speed ae . Both change the ratio So/y by the same amount.

By the same token a decrease in y may be compensated for by that decrease in ao

which would maintain the ratio a,/y the same.

• The velocity of the driver gas in a shooktube in which the initial driven gas pressure is made

as low as possible will approach more closely the escape speed,

t That this plot is nearly a single curve for el' v values follows from the fact that Pp/Po

is approximately a function only of ao/Yup (see Equation (11-10)).
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Since the value of y for ideal gases may be altered relatively little (from
' - 5/3 to 'y = 1), and not as desired, the ratio a 0/y is practically increased only
by increasing the sound speed a, ; in this way high projectile velocity is obtainod
in an x0 = Co, D/D, = I, PPIG Gun.

Section 13

The Finite Chamber Length, Do/D 1 = IPP Gun

If the length of the chamber is not effectively infinite, disturbances originating
at the projectile reflect from the back end of the chamber, and subsequently reach the
projectile (see Appendix D). Before these disturbances reach the projectile the
motion of the entire gas is described by the simple wave relation, u + 0- = o-o.
However, after reflections reach the projectile, the gas expansion is no longer a
simple wave expansion, and the sum of u + o may be shown to be less than 0
Then, the equations which must be used are the characteristic equations (7-4) and
(7-5) rewritten below.

u + cr = a constant 
(13-1)

for lines of

dx/dt = u + a

u - 7 = a constant (13-2)

for lines of
dx/dt = u- a

The gas equation of state relations are, for the isentrope,

p = P(p) (13-3)

a = a(p) for a given entropy (13-4)

0- = o-(p) (13-5)

and Newton's Law for the projectile is

MduD = DpA , (13-8)
dt

The solution of these equations in the finite chamber length, constant diameter,
gun case requircs a numerical step-by-step procedure which can be done by hand
computing, as outlired in Appendix E.

Obtaining the chamber length x. necessary to be effectively infinite requires a
calculation of the path of the first reflected impulses, For a PP Gun of constant
diameter with an ideal propellant gas, Heybey 3 has obtained an analytic expression
for x0 as a function of the velocity of the projectile (uPlat) at which the
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S x Projectile Path

•p~t

xo

first reflected impulse reaches the projectile. This may be transformed to yield

p0A- X0  2 j [ u C7 -/- 1 (13-2 1

Ma02  V+1 15] 'YPlat

which for y = 1 becomes

p0AIX0  _ / 1 (13-8)

MaI
2

0

SLOPE OF PROJECTILE

P I•C'•\• " St PATH AT x - xps

' \ -SIMPLE WAVE

FIRST REFLECTED DISTURBANCE

From Squation (13-G), and from the projectile up versus x. relation of Equation
(12-1), x. may be plotted as a function of the distance traveled by the projectile,
x s. when the first reflected wave reaches It, This is done in Figure 5 and in
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the following sketch, from which it is noted that xplt/xo is proportionlm to x,
From the figure

Plst . Ax

xo Mao (13-9)

'31st 2.5 POA x

x0 M a 2

Y= 
_PPIG Gunoo CD/1 k 1

.•• Po Al Xo

2Mo

The disturbances reflected from the back of the chamber "transmit" the information
that there is a finite quantity of gas in the chamber. The effect of these reflected
disturbances is to decrease the pressure behind the projectile below that which it
would be without reflections; this is illustrated in the fnllowing sketch, which is a
plot of the pressure behind the projectile as a function of projectile velocity.

PP - /X0 = COp 0 0

•~ x finite •

up ist

This plot can be redone in terms of dimensionless pressure p/p. versus dimensionless
velocity u/aSO This is shown in the sketch on the following page, Each
dimensionless chamber length PoAXo/Ma 2 would have a difforent Pp/Po versus up/aa
curve after the first reflection has reached the projectile. It is noted from these
sketches that each time the reflection from the back end of the first reflection
roaches the projectile, the pressure-velocity plot has a discontinuity of slope.
However, a velocity-travel plot of the projectile is found not to have an obviuus
discontinuity of slope,
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PP- infinite
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In the case of an effectively infinite length chamber the performance of the
projectile may be expressed in terms of dimensionless projectile velocity (u/a 0 )
versus dimensionless travel distance (poAx:/Mao). In the finite length chambter
preburned propellant gun, a numerical solution may be calculated for each
dimensionless chamber length (1o = PoAZ0 /Mao). Thus, a dimensionless velocity
versus travel plot for various dimensionless chamber lengths may be obtained.
Such a plot is shown in Figure 6 for a y = 1,4 gas. The points where the finite
xo curves depart from the x. = co curve may be calnulated from equation (12-7)
or obtained from Figures 3 and 5.

Classically, the dimensionless parameter G/M where 0 is the mass of the gas

in the chamber, has been shown to be an important interior ballistics parameter (see
Appendix F). The dimensionless chamber length !a may be transformed into the
dimensionless mass ratio G/M by the relation

PtAoxo = (13-10)
Mao YM PPIQu

Da/D"',
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To 5
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PPIG Gun

Do,/D1 , x o#ao
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xp poAxp/M0

where the ideal gas relation ypo/po = a: has been used, The performance curves for
a finite chamber length gun now take the form shown in the following sketch,

G 1 00

M

G = PPIG Gun
M 10 DI/D 1

U P q 2 X O 0

00

P°A1 XP/M a2-

A plot such as this is given in Figure 7 for the y = 1.4 gas. Other plots for
different y values are given in the D0/D, = 1 plots of Figures 20 and 21, Hence,
the behavior of a projectile propelled by an ideal gas in a preburned propellant
gun with constant diameter and finite chamber length is fully specified by the plots
in these figures*.

* These plots are the results of numerical calculation using the characteristic equations above
and are further described in Part V,
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PART IV. THE CHAMBERED PREBURNED PROPELLANT GUN

Section 14

Qualitative Discussion of the Do/D, > 1, PP gun

The chambered gun consists of a chamber joined to a smaller diameter barrel, as

shown in the following sketch,

Transition section
may be abrupt or gradual DI

L
In conventional ballistics calculations chambrage is treated by assuming that the
actual chamber can be replaced by an equal volume imagined chamber of cross-sectional
area equal to the bore cross-sectional area (see Special Solution discussion
in Appendix F); thus the performance of a gun Is considered only a function of the
gas to projectile mass, O/M, and is not dependent upon the geometry of the chamber.
That this is not a valid procedure is evident from the discussion that follows.

It seems reasonable that the greater the ohwnbrage of a gun the greater is the
proportion of the rarefaction (which had previously come from the projectile) that is
reflected at the transition section as a compression, One may consider that for an
infinite DV/D, gun no part of the reflected rarefaction produced from the
projectile will be transmitted through the transition section as a rarefaction; all
of it would be reflect as a compression moving toward the projectile.

The length of the chamber, x0 , determines the time taken for rarefactions to
reflect from the breech; the smaller x0 is, the more quickly the reflections reach
the projectile and tend to lower the projectile velocity. Also, the smaller the
xO, the more quickly the rarefactions travel back and forth in the chamber and lower
the pressure in the chamber,

Hence, one concludes that increasing either the chamber length x0 or the chamber
diameter D, will increase the projectile velocity. However, increasing D, provides the
opportunity of increasing the projectile velocity to a greater value than by increasing
xo : this is seen from the following example: With infinite x and finite Do equal
to diameter of the bore, the projectile receives neither reflected rarefactions nor
compressions. However, with infinite D and finite xo the projectile receives
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only compression impulses and as a result the projectile velocity is greater than

in the finite Do infinite x0 case.

It will be shown in Section 28 that the numerical results for chambered gun
performance with an ideal propellant gas indicates the following:

(a) For PPIG guns with equal G/M the larger the chambrage, the larger will be

the projectile velocity in the initial stages of motion (before a number of
reflections have occurred between breech and projectile).

(b) For PPIG3 guns with equal G/M. in the latter stages of motion (after a number
of reflections have occurred), the projectile velocities will be approximately
the same for all guns, no matter the value of the ohambrage.

(c) In agreement with (a) for an infinite value of G/M (in which case no reflections

come from the breech), the greater the chambrage, the greater will be the
projectile velocity for PPIG guns.

Section 15

The Gas Dynamics Equations for a Chambered PP Gun

In order to determine analytically the behavior of the expanding propellant gas in

a chambered gun, the assumption is again here made for convenience that the flow is
isentropic (see Section 40 for the non-isentropic case).

The previously derived one-dimensional characteristic equations are applicable to

the constant diameter chamber and are applicable to the constant diameter barrel.

D(u ± o)

Dt

Dt

The gas flow in the transition section, which joins the chamber to the bore, is
actually a two-dimensional unsteady flow. However, it is not feasible to solve the
two-dimensional unsteady equations. There are two possible approximate methods of
treating the flow through the transition section. The first method is to assume that
the change in area from the chamber to the barrel occurs gradually so that the flow
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may be assumed to be one-dimensional. Then, the one-dimensional characteristic
method can be applied to this change in area section. The characteristic equations
become, for the change in area section,

D(u±co) au dA
D • - u ± o-) + (u ± a) x (u ± ) (15-2)Dt •t xA di

where u is the gas velocity, a is the sound speed, o is the Riemann function,
and A is the cross-sectional area of the gas layer at position x in time t
(For the derivation and application of these equations see, for example, Reference 5,
6, 7 or 8.) These equations require a tedious numerical procedure to solve, and are
generally not suitable for hand computation. It is to be noted, however, that the
quantity u ± or , in contrast to the constant diameter case, does not remain constant
for disturbances in the transition section.

The second approach, and one chosen to be employed here as being more convenient
and a good approximation to the actual situation, is to assume the following: At any
given time the rate of change of mass and energy within the transition section is
negligible relative to the differences between the exit and entrance fluxes of these
quantities; thus, the changes due to variations of time are assumed negligible relative
to those due to the variations in position within the control volume, This assumption
is made clear by taking as a control volume the transition section as shown in the
following sketch,

0

CONTROL VOLUME

Then the applicable equations' of continuity and energy are, respectively*

•K(Vcon Vol (puA) 0 - (puA)1  (15-3)
\La•ICon Vol

and

[h + (puA) h + uA-

Although it is not assumed that the flow within the transition section is necessarily one-
dimensional, it is assumed that the flow at the entrance and exit planes of the transition
section is one-dimensional,
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where m and E are the mass and internal enerav in the tranfltinn RAntinn_ Rv
our assumption above, the two unsteady terms on the left hand sides of Equations
(15-3) and (15-4) are negligible.

It is to be observed that, if the transition is rather sudden, the control volume
is small; hence, the unsteady terms on the left of these equations breiv proportional
to the magnitudo of the control volume, are necessarily small; thus, Jr. the case of a
sudden transition, the assumption above is automatically valid.

With this assumption the equations which are applicable to relate the conditions at
the entrance of a transition section to those at the exit of the transition section are
the quasi-steady equations of continuity and energy. Thus, at each instant of time,
the applicable equations are

2 u2
he + u. = hi + = function of tim(15-5)

2 2

pCuCAC = piulAi = function of time (16-6)

Since the flow has been assumed isentropic, the thermodynamic relation between
enthalpy and pressure is

dli = (dp/p)s (15-7)

and

hf-he= i dp/p . (15-8)

Equation (15-5) becomes

u - p (15-9)
-1 2 = lp dp/p2 p1

It is shown in Reference 9 and may be shown from Equations (15-3) and (15-4) that
the use of the quasi-steady flow equations tn describe the gas flow between the chamber
and barrel of the gun yields u larger projectile velocity than would be yielded by the
use of the actually applicable unsteady equations, However, experimental results
from a chambered preburned propellant gun by Seigel and DawsonLO have demonstrated
that the difference was sugficiently small as to be unmeasurable. These experiments
were made with a gun using room temperature air at about 3,000 lb/in2 as a propellant.
The gun had a 0,50 in diameter barrel which could be joined to various chambers of
varying diameter up to 2.5 in. The chambers were joined to the barrel by means of a
30o half-angle taper". The projectiles were one-gram plastic projectiles which were
sheared by the compressed air in the chamber. A schematic of the gun system is shown
in Figure 8(a). The measured projectile velocities were compared to the theoretically
predicted velocities based on the use of the quasi-steady equations above. (These
theoretically predicted velocities will be discussed below.) The comparison is shown
in Figure 8(b). It is observed from the figure that the quasi-steady flow approxima-
tion in the transition section yields good agreement with experiment.

• The experimental results, bued on one test with a 900 half-angle taper, seem not to depend
on the magnitude of the angle of taper.
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ThA fnllnwino XkAftih mhnwM t.hA rlharntAl'ri tirA .MADIrAm fur a nhAmhrAd PP GIbn

Characteristics may be drawn in the transition section by fairing them from the
known conditions at the inlet to the known conditions at the exit. The simple wave
region in the chamber for which u + a = iO is denoted by the letters A-B-C

With Equations (15-1), (15-6) and (15-8) and the isentropic equation of state of
the gas, it is possible to calculate quantitatively the behavior of the projectile

in a preburned propellant ohambered gun.

Section 16

Demoqstration of the Advantage of Chambrage
for the PP Gun with x 0 = cO

The preburned propellant guns to be compared are a constant diameter gun and a
chambered gun, both having infinite length chambers, It has been shown that, for the
x0 c constant diameter PP gun, the sum u + a is always equal to a constant value,
0"0 However, it will be shown below that for a chambered PP gun with x. CO , the
sum of u + o' behind the projectile is greater than cro consequently, the projectile
velocity is greater for a chambered gun than for a constant diameter gun.

Let us examine a chambered PP gun with x 0 = co, Since the chamber is infinitely
long, there exists a simple wave region in the chamber, Hence, u + 0' = 01, in the
chamber, and, in particular, at the entrance to the transition section position "0",

uc + 0a, = 0 , (16-1)

Within the transition section at any time the quasi-steady flow equation applies,
which becomes in the differential form

udu =-dp/p (16-2)
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The differential change in u + a- in the transition section is, from the definition
of a- and from Equation (18-2), "

dpd(u+oU) = du.d 7

where M is the Math number in the transition section, i

Equation (16-3) demonstrites that u 4 a" increses in th• transition se(tion,,

since the flow there is alway's subsonic. Hence•, at the entrance to the barrel, and
consequently at the projectiles,

Up + op =- (1d-4)

Since a- is a monotonic function of pressure, the greater the quantity u + a
behind the projectile, the greater will be the projectile velocity, It is thus
concluded that tue projectile velocity in a chambered xo = o, PP gun ill be great,.
thasn that in a D0 /Dt 1er , xi gun.

eThe sate result mai be arrived at by examining the pharacterlstyc equations (15t2) whuch

apply in an area change.
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U +O"

- O= 00
Ob

up + 01P 
!

This result is true regardless of the equation of state of the, gas. •--

It is noted that the velocity increase in the transition section is

dp
udu - -(16-5)

P

This is in contrast to the expression for the velocity increase in the constant
diameter, c.o = co , chamber flow which is

dp

du = - -- . (16-6)
ap

It is thus seen that although a low "hp" as a function of p Is desirable for

the expansion In the constant diamneter, x0 = co , chamber, a low "p"1 as a function ofp is desirable for the expansion in the transition section of such a gun. In the
case of an ideal gas, both a= and p are inversely proportional to the initial

sound speed. Thus, the higher the initial sound speed, the greater will be the
projectile velocity in a chumbered or unchambered gun. However, in the case of aTun in which the propellant behavior is non-ideal, the performance is not specified
by the initial sound speed, as will be shown in Section 63.

p-sdsial-orteepasoi h rasto scion of scagu.inih
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Section 17

The Special Case of the PP Gun with Infinite Chambrage

If the diameter of the chamber is infinitely large relative to that of the barrel,
the quasi-steady equation of continuity yields

Pi Ai
uO = T--• •0(7

p0 
0~

Therefore, the gas remains virtually at rest at the entrance to the transition
section and its pressure, density, etc., do not ehange from their initial values.
Thus,

PC =Po (17-2)

PC PO (17-3)

Equatioin (15-9) for the barrel entry velocity becomes

u = fPc dp S= -- (11-4)
2 PIp

The unsteady constant cross-sectional area characteristic equations apply in the

barrel, so that, in particular,

up + p = u +o1  . (17-5)

Equations (17-4) and (17-5), with Newton's equation for the projectile and the
equation of state of the gas, are sufficient to determine the behavior in this gun.

The characteristics diagram appears as sketched.

xoe

Dscp 00 X0  0* = 7 characteristics =±a 0

In the chamber the gas remains substantially at rest in its initial state, and all
the characteristic lines there have a slope of i a . Numerical computation need
only be done for the barrel section, and this fact simplifies such computation for
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Lu Do/ - , IP Gull. -tfle lengLh oi tho chamber x. tor tnis case nas ansolutely
no influence, because by assuming infinite chambrage an infinite quantity of propellant
gas is assumed to be in the chamber.

Numerical results for this infinite chambrage case are given below.

Section 18

The General Equations for the Chambered
PP Gun with Effectively Infinite Length Chamber

As in the situation of a gun with no chambrage, a gun with chambrage may have an
"effectively infinite length chamber" (x, = co); in that case the chamber length x.

is sufficiently long that rarefactions from the back end of the chamber do not reach
the projectile during its travel in the barrel.

p

xo

Thus, in the sketch, O-F-E represents the projectile path; the first disturbance
0-A-B , upon reflection from the back end, reaches the projectile at E . The regionin the chamber (A-B-c in the x-t diagram) where reflections have not reached is
therefore a simple wave region, entirely describable by the equation

u +c = .o (18-1)

ln particular, this equation may be applied at the entrance to the transition section,
so that
!uc + co = T0  .(18-2)

:* The conditions at (o) may be related to those at (i) by the quasi-steady Equations
,•(15-6) and (15-9).

(puA)0  (puA) l (18-3)

2 2[U--c u c - - i ( 8 4
0 D

2 7 2 h (84
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The charS.CtAri~tinr Arnlitinna anntlv.- 4-he h- -. 4

D(u ± o-)
-~i±0 0 (18-5)

Dt

With the assumption that the projectile is unopposed by frictional forces or gas

pressure in front, the projectile motion is described by the equation

duM
dt A1Pp (18-6)

The equation of state of the isentropic expansion of the gas may be expressed as

p = p(0)

for the isentropic (18-7)
h h(o')

a = a(oa)

The complete behavior of gas and projectile in an xe = co , PP gun may be obtained
from Equations (18-1) through (18-7).

Section 19
//

The Conditions at the Barrel Entrance in a

PP Chambered Gun with x. = c0

Let the u - a disturbances coming from a projectile in a PP chambered gun with
x0 = co be examined. As the projectile velocity increases, the velocity u of the

gas behind the projectile increases, and the sound speed a decreases. Thus, the
quantity u - a , the disturbance speed, increases. This is evident In an x-t
diagram (as sketched) by the increase in slope of the u - a lines.

x u - a ines

•t
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As time elapses, the alone of the u - a disturbance liner at fhe harrel

entrance approaches zero, i.e., the flow approaches the sonic (Mach one) condition.
As seen in the sketch, the slope u - a changes more and more slowly as time goes
on and the flow approaches sonic; thus steady flow is appruamuied wiLh increasing time.

as t--> CD

______ __ u| -- "

Moreover, it is obvious from the x-t characteristics diagram thskt the slope of
the u - a disturbance coming from the projectile cannot be greater than zero at the
barrel entrance; if the slope of the u - a disturbance line would be greater than
zero it would not reach the barrel entrance but would travel away from it.

The fact that at large times the flow becomes steady and sonic in the barrel
entrance of an x0 = ,o P PP Gun is often used to approximate the flow at earlier times
(see Section 25).

Section 20

Equations for the xo = o, Chambered PP Gun with an

Ideal Gas Propellant

Por the case of an ideal propellant gas the sound speed, enthalpy, pressure, and
density are simply related to the Riemann function (see Appendix I).

a = (-1)o"/2 (20-1)

h = a 2/(-/- 1) = (y- 1)' 2/4 (20-2)

p = p(,/0o)2-//(-/-1) (20-3)

p = Po(0 @/1o)2/(V1"1) (20-4)

With the above relations, the general equations in Section 18 for'the xo = CO
chambered PP Gun may then be expressed in terms of the two independent variables, u

and o, , as follows:

(a) the simple wave characteristic equation relating the conditions of the gas at
any point in the chamber with the rest conditions at the breech

u +o" =010 (20-5)
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the transition section

Uc + 0 (20-6)

(e) the quasi-steady continuity and momentum equations relating conditions at the
entrance to those at the exit of the transition section

( ) Acu/Aiui Aoui/Alui (20-7)

u'/2 + (7- o/4 = u(/2 + - 20-8)

(d) the characteristic equations in the barrel

D- - (u *0) = 0 (20-9)
Dt

(e) and Newton's equation for the projectile acceleration

M -U = P 0A 1( c7p / d -o) 2 / ( _/' t) (2 0 - 10 )
dt

nrom Equations (20-5) through (20-10), the entire behavior of the gas and

projectile can be computed for a PPIG chambered gun with an effectively infinite
length chamber. The actual numerical technique for so doing is outlined in
Reference 11, Discussion of the results of numerical computations of these equations
is given in Section 28.

Section 21

Obtaining the Maximum Projectile Velocity (Escape Velocity) for
the Ohambered PPIG Gun with An xo = o Chamber

By the use of the equations presented in Section 18, the maximum projectile
velocity (which is the same as the escape velocity) can be obtained as a function of
the ratio of chamber diameter to barrel diameter. In an x0 = w PP Gun, the maximum
projectile velocity is attained by an unopposed projecti.lk in the limit of infinite
travel in the barrel, for then the propelling pressure bt )mes zero. Although this
velocity is an idealized limit, it is instructive to see the effect of chambrage on
this limit.

As the projectile velocity increases in the chambered gun with infinite chamber
length and infinite barrel length, steady state conditions in the transition section
are approached, and the velocity at the exit of the transition section approaches the
local sonic velocity*. When the projectile has reached its maximum velocity (the
escape velocity), the propelling pressure behind the projectile will have dropped to

* As pointed out in Section 19. the maximum velouity with which gas can issue from the chamber
into the barrel of a PP chambered gun with x. o is the local velocity of sound,
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zero; at this time steady state conditions will exist in the transition section, and

the gas will be flowing into the barrel at sonic speed.

c u= a Uesc

Thus, the steady flow Equations (18-3) and (18-4) will exactly apply, and, in
addition, the velocity at the transition section can be equated to the sonic velocity
without approximation. Therefore, for the case of the ideal gas propellant, the
equations which apply at this time are the following:

Continuity: (oCi/oc-) 2/(Y--) = A0ue/Alu1  (21-i)

Energy: u2 + (7 - -1) 2/2 U' + 1y-ioj2 (21-2)

Sonic condition: ui = aI = ( - 1)01/2 (21-3)

All of the quantities in these equations are for the time when the projectile velocity
is a maximum.

As the chamber is effectively infinite in length, Equation (20-6) can be applied

to the gas in the chamber at the entrance to the transition section at this time.

Uo +o a 0o (21-4)

To determine the escape velocity, the impulses traveling downstream from the transition
section toward the projectile may be examined. For each of these impulses the quantity
u + o- is a constant (by Equation (20-9)), a different constant for each impulse.
equal to ui + vi , since they travel from the exit of the transition section. When
the projectile is traveling at escape speed, the pressure of the gas directly behind
it is zero, and hence the Riemann Function op of this gas, by Equation (20-3). is
zero, Therefore, at this time

aso = (u + Cr)projectile = up +O'p = ui + - (21-5)

where u... is the projectile escape velocity. From Equation (21-3), the escape
velocity becomes

a= - 2 (21-6)

Prom Equations (21-1) through (21-6), the relation between the escape velocity
and the ratio o chamber to barrel cross-sectional area (or chamber to barrel
diameter) can be obtained for the infinite chamber length gun.
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2

where Ues is defined as
=L -- 7 -e1cuea (21-7)

sacc

fe s 2 ao

For a propellant gas of y - 1.4 , the projectile escape velocity is plotted in

Figure 9(a) as a function of D0 /D 1 as calculated from Equation (21-7). It is evident
from Equation (21-7) that, as expected, the escape velocity for an infinite chamber

length, constant diameter gun (Do/D 1  1) is 2a0/(C- 1) or, dimensionlessly, usc = 1.
Further, it is seen that, as Do/D, approaches an infinite value, U=,, approaches
the value of (y + 1)/2, that is, Us.. becomes

us ~ f 7 -0 i (21-9)

It is noted that the increase in escape speed between chambrage and infinite

chambrage is /

Auesc(C) = USB0(D./D 1wa) - Ueac(D°/D±-1) + T-l (21-10)

which in the limit of I = 1 , becomes equal to 0.5 a0 . Calculation yields the
fact that the increase in escape speed is approxinately equal to half the initial
sound speed for all gases with y between 5/3 nnd 1. This is seen in the table.

F - 1 1,2 1.4 1,6 5/3

L uacm 0.50 ao 0,49 ao 0.48 ao 0.47 ao 0.48 a0

A plot of AUeon is plotted in Figure 9(b) versus (D1 /D 0 )2, the reciprocal of the
area ratio. This plot is found to be almost a single straight line for all y values
and is easily committed to memory.

The increase of escape speed may be made dimensionless by dividing it by the
increase of escape speed for infinite chambrage. The resultant dimensionless quantity

is then the percentage increase In escape speed.
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1/2a 0

'u esc ALL Y'S
PPIG Gun

0 1- - 2
0 1 A1/A° (DI/Do)2

Percentage increase in

U ____ -us 
(21-11)

SAu O 1] 2ao

F•em _Y U - 1)

A plot of percentage increase in u versus (D /D 0 ) 2 for different s is
presented in Figure 10. It is seen that nearly a single curve for all y values
representi this percentage; it is practically independent of y

Section 22

Discussion of the Projectile velocity Increase
in an x 0 , PPIG Gun Due to Infinite Chumbrage

The result of calculations, as outlined in Reference 9, for the case of a y 1. 4
ideal propellant gas in a gun with infinite chambrage is shown in Figure 11; here,
projectile velocity is plotted as a function of projectile travel. On this same
figure is given the result for an x, = co , PPRO Gun of diameter ratio one
(calculated from the analytic expression of FEuation (12-1)).

From this figure it may be seen that the velocity increase due to chambrage (Au
increases with increasing travel and verj soon approaches a value equal to one half
the initial sound speed; at infinite travel the difference is exactly the difference
in escape speeds, that is,

S +l 1 290Aup =Auesc (0 ) = [ - l _i • 0.5 ao (22-1)

for xp = OD .

A plot is sketched of Au versus u /ao for the D/D 1 gun (all values at
each point on the curve taken fpr the same poAL/Mao).
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AUp

- uP Do/D I =1 X =c

(p / Do/DD I=

The velocity difference curves obtained from calculations done for other values of y
appear similar to this curve for the y = 14 propellant gas.

It had been previously noted that the performance of the x0 = oo, constant diameter
PPIO Gun depends essentially on the parameter as/y (e.g., see Figure 4). Therefore,
it is reasoned that the various au curves for different y values may be brought
into near coincidence if plotted against ^up/a 0  rather than u p/ao . This turns
out to be the case, as seen from Figure 12. It is noted from this Figure that the
behavior of 6u for all the y curves may be approximated as being linear at low
values of /u,/ao and equal to 0. 5 o at values of /uW/a 0  above about 3. By using
this approximation 6up versus -u /a 0  appears as shown in Figure 13 and in the
following sketch*.

AU

increase in
up due toIo
infinite All Y 'S
chambrage 1/2 a0  PPIG GUN

X0 = C

0 Do/D1 I
3

It is seen that the effect of infinitely chambering an x 0 =o PPIO Gun is to
increase the projectile velocity by about a&/2 at the most.

Charters (p.50, Reference 86) discusses a similar approximation.

!

1..
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Section 23

The Projectile Velocity Increase for an x0 =0,
PPIC Gun 11th Any Value of ChMaihrage

Prom Figure 9 (or Equation (21-7)) the diameter ratio of the PPIG Gun which will
yield an increase in escape velocity midway between that of the D0/D1 = 1 gun and
the Do/D 1 = aw gun may be obtained. This diameter ratio is found to be approximately
equal to 1,5 for any y propellant gas. The calculation of projectile behavior for
a DO/D1 = 1.5 gun with a y = 1.4 propellant yields the reault shown in Figure 14;
also shown in this figure are the results for a Do/Di = 1 gun and a Do/D, = oo gun.

It is apparent from the curves of Figure 14 that the velocity of the Do/D 1  1.5
gun is approximately half way between the Do/D= 1 and DV/D, = co guns for all
values of projectile travel. Thus, the Do/D1 = 1.5 gun which yields an increase
of the escape velocity of 50% is seen to yield approximately an increase of
projectile velocity (Au) of 50% for all velocities. It is thus postulated that the
curve of Figure 9 (or XFgure 10), therefore, which applies to the percentage escape
velocity increase, may be applied to the percentage velocity increase of an
X0 = co , PPIg chambered gun at any projectile velocity. Calculation confirms this
postulate. Figure 10 is thus replotted in Figure 15 with the ordinate now labeled
as the percentage velocity increase due to any value of chambrage versus the gun
diameter ratio squared.

1 ALL Y'S
U PPIG GUN

A uPoo
up Up

Up Up Do/D1 =15--

UPDo/ CoU'-UPDo/D

2I (D 1/D 0 )2

0 0( 1/1 .5)2 1

This curve may be approximated by the straight line,

Aup = Aupc[1 - (DI/Do)2] . (23-1)

With this equation the plot of Figure 13 may be transformed to yield the velocity
increase due to any value of chambrage at any velocity; this is seen in the sketch
on the following page.
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X0 = CIO- 11/2 c o
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0 3

To calculate the velocity of an effectively infinite length chambered gun, one need
only calculate the velocity of a gun without chambrage and add to this the value of

Aup . Hence, any performance curve for an x0 = co PPIG Gun with no chambrage
becomes one for a gun with chambrage if for the projectile velocity u. issubstituted up - Aup

In this manner the plot of Figure 4 has been replotted in Figure 16 to apply to
the case of a PPIO chambered gun with an effectively infinite length chamber.

Section 24

The Pressure-Velocity Relation for the Gas in
an xo PPIG Chambered Gun

The pressure-velocity relation for the gas directly behind the projectile in a
PPIG chambered, x. = o , gun may be obtained by reasoning similar to the above.
With the p-o relation for the ideal gas, Equation (20-3), the pressure behind
the projectile may be expressed in terms of the u + o- behind the projectile,

p p ={up + o' p -upT/ 0(24-1)

which may be rewritten as

Do 5 / 1 (24-2)
pp

where c is defined as
UU P + o Vp - ao P ( 2 -3S• (24-3)

r0

* This aproximation will yield projectile velocities correct to within a few percent.
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For a y = 1 gas, Equation (24-1) becomes

LP = e(r-u/a) (24-4)

p0

where r is defined as

Up+ -Crp-o
r= p + (24-5)

a

The sum up + -p is equal to 0,o at the start of projectile motion in an x0 =0

PPIG chambered gun; this sum approaches the escape speed at large values of lrojectile
travel at which time the gas velocity at the throat approaches sonic velocity. A plot
of up + crp obtained from calculated results indicates a behavior which may be
approximated as sketched and as shown in Figure 17.

1 - (D 1/Do ) 2
% -7 1.•_ 1 -I ao2P-G U

or ly Tob x0 =Q)C

or .5 FOR A Y=1 gasor

YU P/'ao l---.For

)'= I'.5

Thus, p /PO = (1 + 1 - up[o)2"/(Y'i) becomes

Ppp/Po = I+ -1 1 -(D /no) 2]Yu (T-l)Up(46
{ 1.5 a0 , 0  (24-6)

for /up/a 0 < 1.5, and

/ J0 1 [ + . 1 [1- -.L - ( (24-7)
P 2 DLoJ 2a J

for -yup/a 0 - 1.5.

It is seen '-rom the sketch that the approximation is made that the gas flow becomes
sonic at the oarrel entrance at a time which corresponds to a projectile velocity of
1.5 ao/y.
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with e from Equations (24-6) and (24-7) may be inserted into Newton's equation to

calculate projectile velocity as a function of travel, However, the velocity-travel
relation for the xo = ai chambered PPio (un I.s more easily obtained as outlined in
Section 23.

Section 25

The Barrel Entry Sonic Approximation to Calculate
the Projectile Behavior in an xo = oD, PPIG Chambered Gun

In an x. = O , PPIG chambered gun, the flow into the barrel approaches sonic flow
with increasing time. However, for convenience in calculating the projectile

velocity-travel history, the approximation is sometimes made that the flow is always
sonic at the barrel entry. Thus, the equation for pressure

Lp + up 2Y/(Y- 1

P L 2% J
becomes

p= I + - (I - Al/Ao) - 2a (25-1)
P 42 / j

or, for the y = 1 propellant gas, it becomes

pp= e[+(AO) a] (25-2)
Po

It is to be noted that, when Equation (25-1) is used in Newton's equation to
obtain the projectile velocity-travel relation, the result is precisely that obtained

for the D0 /D 1 = 1 case (Equation (12-1)) except that for p. in Equation (12-1)
one substitutes

and for a 0  in Equation (12-1) one substitutes (25-3)

The plot of Equation (12-1) in Figure 3 or Figure 4 may be applied to a chambered
gun by using the substitutions of Equation (25-3).
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The sonic assumption above gives a relatively good approximation for the
projectile behavior in an x 0 = co , PPI chambered gun. However, more accurate
results are easily obtained, as outlined in Section 23.

Section 26

The Calculation of the First Reflected Disturbance
in a PPIG Chambered (un

The analysis above has been for a chambered PP Gun having a chamber length which is
effectively infinite (X, = a)). Obtaining the magnitude of the chamber length necessary
to be effectively infinite in a PPIG Gun requires a step-by-step numerical calculation
of the path of the first reflected disturbance. The cases of Do/D, = 1, 15, and co
are here first considered. The Do/D 1 = 1 case has been discussed in Section 13
(see Equation (13-7)) and the results are shown in Figure 5.

For simplicity in calculating the path of the first reflected impulse in the case
of the chambered guns, the length of the transition section between the chamber and
barrel is taken to be zero,

r0 ABRUPT TRANSITION

Examination of Equations (17-1), (17-2), and (17-3) demonstrates that, for the
infinite chambrage gun (Do/D, = oc), the velocity of the gas in the chamber section

is zero and the pressure, sound velocity, and other gas conditions In the chamber
remain constant at their initial values. Thus, the disturbances in the chamber
section travel at the initial sound velocity; the time required for the first impulse
to travel from the transition point to the breech and back (point P in the following
sketch) is equal to 2 x/a&0

t

D 0 0

Do= CD -2

•--2 X o/.
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from numerical results of the infinite chambrage calculations previously referred to
can be taken to correspond to the time at P . Then the velocity upist and position
Xpist of the projectile'when the first disturbance reaches it at Q can be ubLained
from the infinite chambrage calculation by following the downstream impulse from P
In this manner paths of the first reflected impulses for D0/D, = 1 are obtained.
The resultant Do/D 1 = o plots are shown in Figures 18 and 19.

For the Do/D, = 1.5 case, the characteristics equations can be applied in the
chamber section (where u + o- -0) to obtain the path of the first reflected impulse.
From the points R and S obtained in the previously referred to D0/D 1 = 1.5
calculation on the x = 0 line (see following sketch), point T can be calculated;
from T and U the point V can be calculated, etc.

:Plst VT t --

xo

00

Point X, which specifies x 0 , is the intersection of the downstream characteristic
R-T-V... and the first upstream impulse (of slope -2/(y- 1)). Since point Y on the
projectile path has been calculated previously, the first reflected impulse path is
completely known. In this manner the chamber length to be effectively infinite
was calculated for the diameter ratio equal 1.5 case.

The results of the three diameter ratios calculations are shown in Figures 18
and 19 and illustrate that the D0 /D 1 = 1.5 case falls again apprdximately midway
between the Do/D1 = 1 and D ,/D1 = cases; therefore, chamber lengths necessary
to be effectively infinite for diameter ratios other than 1, 1.5, or infinity
may be calculated by interpolating the results of Figures 18 and 19 as shown in the
sketch on the following page (inverse area ratio interpolation).
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PART V. COMPLETE NUMERICAL RESULTS FOR THE PROJECTILE
BEHAVIOR IN A PPIO CHAMBERED GUN

Section 27

Calculations by Means of Electronic Computing Machines

The method of characteristics as outlined above may be numerically applied to

calculate the performance of a PP Gun system. However, in the cases where the
chamber is not effectively infinite in length, hand calculation becomes extremely
lengthy and tedious. Further, the accuracy of the calculated results depends on the
spacing of the numerical. points. The greater the spacing, the greater the error;

hand calculation, particularly, does not allow small spacing and thus calculating by
means of electronic computing machines offers great advantages relative to hand
caleulatior. Not only is much time saved, but accuracy may be substantially increased.

At the present time there are two methods generally used by computing machines to
calculate the behavior of the projectile in a gun, The first is the method of
characteristics 5 5 , 56 already discussed. The second method is a Lagrangian scheme in

which the gas is broken into small layers to each of which is applied Newton's Law.'
The pressures acting are assumed to vary negligibly over a small time interval during
which the calculation is made to determine the movement of the sides of each layer.

The movement of the sides of each layer determines the new volume for each layer and
therefore the new pressure for each layer.

t IP M Bu =2 I (p I •u
I I M2 77i --

I ul "-1 U2 ,-- u3 -,1
II I I

u = 2 + (p -p3)A(8t)
2 M2

I P ' P2  
p -pP

t+ t I Ixt(C.+.) = 2At+
I u,1 -. l u2 '- U32-..Ol M2  2

The process is then repeated determining the motion of the layers of gas under the
influence of the newly calculated pressures, The method also has incorporated into it
an ability to take into account shocks. This scheme is based on the method devised
by von Newmann and Richtmyer 1 2 13. The application of this method to two-stage gun
calculations is described in References 14 and 33. It is interesting to note that
the method is also applicable to the flow of solids and liquids as well as gases;
moreover, it can be extended to apply to unsteady two-dimensional problems.

Section 28

Numerical Results for the PPIG Chambered Gun

Calculations have been obtained by the use of both of the computing schemes outlined
above. The results may be expressed in terms of dimensionless plots similar to those
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variables. Thus, a plot of dimensionless projectile velocity versus projectile travel
for a given geometry (i.e., for a given D0/D1  and given G/M*) has been found
convenient. The results of computations made for the US Naval Ordnance Laboratory at
the Naval Weapons Laboratory on electronic computing machines are given for an ideal
gas propellant in a preburned propellant gun in a series of figures (Figure 20 and
Figure 21). The plots in Figure 20 present curves of u P/a vs for varying
values of G/M and a given D0 /D1  and y as shown in the following sketch.

M
Do/D I = 2.5

U°

The curve marked G/h = co is the infinite chamber length case.

These curves are replotted in Figure 21 as uP/ao vs PoA.p/Ma. for varying values
of D,/D, and a given G/M mid .

Y 1.2 _'5 Do/D

UoGU

/Xp Po A1 XIp /Ma2o0

These plots in Figures 20 and 21 thus present the entire performance of a projectile
in an ideal gas preburned propellant gun with chambrage.

It is noted from the plots of Figure 21 that for finite values of 0/M the
projectile velocity curves for every Do/D 1  become coincident at large values of
projectile travel.

* As pointed out previously, a/M is a measure of the dimensionless chamber length, x0 , a. seen

from the expression 0/M - y1 0 A0 /A1 " (P 0A1x0/MsA)(A 0/A1).
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Thus, the projectile velocity at large travel is essentially a function of G/M alone,
and not the chamber geometry.

(In Appendix F the Pidduck-Kent Special Solution to the PP Gun problem is discussed.
This solution has long been thought to approach the accurate solution to the PP Gun
performance in the limit of large travel. This seems to be true, as seen from a
comparison of the Special Solution to the results computed by the electronic computing
machine in Figure 21. It is noted that the value of velocity for a given projectile
travel, as obtained from the Special Solution, oscillates about the value computed by
the electronic computing machine and approaches the computed value at large values of
projectile travel. The Special Solution yields an amazingly good approximation to the
performance of a PPIG gun.)

VARIOUS DO/1DJ

up x SPECIAL SOLUTION
a0  . COMPUTED RESULTS

/~~ -ff3 l. p_

M 
X

!.m



PART VI. THE INFLUENCE OF GAS IN THE BARREL

IN FRONT OF THE PROJECTILE

Section 29

The Compression Phenomenon and the Applicable Equations

If there is gas in the barrel in front of the projectile, the forward motion of the
projectile will be resisted by this gas. The one-dimensional gas dynamic equations
may be used to determine the retarding effect of this gas in front.

Because the projectile compresses the gas in front of it as it moves, compression
impulses are sent forward from the projectile front end, each compression traveling
faster than the one preceding it*. Hence, the compressions converge and a shock forms
at some point S ahead of the piston; this shock increases in strength as the projectile
velocity increases.

XShock a=a

The coordinates at which the shockwaves begin relative to the projectile initial
position may be obtained analytically by the method described in Reference 15 or 1e

(also see Reference 58) as

tahoek = 2a 1 /[(-y + 1)(dup/dt)in] (29-1)

X1 0ock = altshook (29-2)

where the subscript "i1" refers to the initial state of the gas in front of the

projectile and (dup/dt)in is the initial projectile acceleration. In practice for
high-speed guns, xshock and tabock are calculated to be relatively very small. The
shock forms almost immediately in front of the projectile, An x-t diagram is shown
in the sketch on the following page.

This is true because, as the projectile increases its velocity, it pushes the gas ahead of it
at an increasing velocity, and at the saw time it heats it acre, As a result both the local
gas velocity u and the local sound speed a are increased, causing the velocity at which
the compressions are sent forward from the projectile front end, u + a , to increase.
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- " a -- ah of

In the sketch the line A-B-C-D represents the projectile path. The line A-S

represents the first compression disturbance (which moves with velocity a,). The
shock path is indicated by the line S-T-M

To determine the projectile behavior requires the use of

1. the unsteady one-dimensional characteristics equations applied to the propellant
gas in the region in back of the projectile,

2. the unsteady one-dimensional characteristics equations applied to the gas in

front in the region A-D-M-A in front of the projectile,'

3. the shock equations applied across the shock,

4. Newton's equation applied to the projectile.

Pf

dII
M P = A(pp - Pf) (29-3)dt

P p

Thus, a calculation involves continuous iteration mid is much better suited to an
electronic computer than a human powered computer, (Some details of the procedure for
this calculation may be obtained from Reference 5.)
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Until the projectile experiences a disturbance coming from the shock (at B in
the sketch) the pressure in front of the projectile is related to the projectile
vwlncity analytically. Thus, the region A-8-B is a simple wave rcgion* for which

u -' = -01 (29-4)

If the gas in front is considered an ideal gas then Equation (29.4) may be
transformed to an expression for the pressure in front of the projectile up to point B.

Pf = P[il + (y, - l)up/2a] 2-yl/(Y't-) (29-5)

After point B , the pressure must be obtained by the iterative procedure referred to
above.

Section 30

An Approximation for the Pressure of the Gas in
Front of the Projectile

The projectile acceleration in guns very quickly approaches low values; therefore,
the disturbances traveling back and forth between the projectile and shock substantially
equalize the conditions in the gas so that approximately the pressure and velocity

behind the shock at g directly behind the shock are equal to those at f directly
in front of the projectile.

9 ''-Shock
Up.f

P

The shock equations yield the following relation for the pressure and velocity

behind the shock:

p1 p, + u V + i + (30-1)

* A simple wave region, as mentioned previously, occurs next to a region of constant state
(i.e., constant velocity, pressure, etc.). In this instance the gas in the region R-A-S is

in a constant state at its original undisturbed rest condition. The irreversible shock

S-T-M , however, makes it Impossible to employ the characteristic eqations across the shock;
the region B-S-M-D-B is thus not a simple wave region.
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as mentioned,

Pf•- Pg (30-2)

uf Ug

Equation (30-1) becomes

P = 1 + /up>
2

7 1 (y l +1)I + /1 +( +I1 2 (30-3)
p, \ -a,) 4 a\'- 4 al

where up is the projectile velocity; this equation approximates the pressure in
front of the projectile during the latter part of its motion in the barrel. For large
values of uV/a, Equation (30-3) becomes

P'f :e 1 +.2L I 2(Y1 \ +-) 2 Y1(Y1+1I)(U 
2  (30-4)

p 2 \a,) 2 a,

In practice, for high speed guns xshook and tshck are calculated to be
relatively extremely small; the shock forms almost immediately in front of the
projectile at the start of motion. The process of equalizing the pressure and velocity
between the shock and the projectile occurs rapidly; thus, Equation (30-3) is a good
approximation for use to obtain the pressure in front of the projectile. With this
approximation Newton's equation becomes

du
---- = A[P - pf(u (30-5)Mdt

The pressure behind the projectile p. , aL discussed in previous sections, depends
on the geometry of the chamber. For an xo = co, Do/D 1  1 , PPIG

o1 2L /(y-1)

and Newton's equation may then be integrated numerically to yield the projectile
velocity-travel history. For an xo = 0, D0/D1 > 1 , gun Equation (24-2) may be
used. Without too much error the sonic approximation in the barrel entrance (Equation
(24-8)) could be applied, i.e,,

-I {i+[jP - I l - IA (30-7)

and again Equation (29-9) may be numerically integrated. Reference 17 has done this
integration for the case Do/D 1 = O ,

In the case x, = co , a step-by-step numerical solution of the characteristic
equations is required to obtain p. as a function of up .
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A Convenient Approximation to Obtain the Projectile

Behavior With Pressure In Front of the Projectile

To avoid the tediousness of the numerical integration which is generally necessary,

a convenient approximation for the effect of the counterpressure in front of the
projectile has been developed by Seigel"8 . It is hypothesized that the percentage
velocity reduction due to the counterpressure will have approximately the same
functional relationship without regard to the particular gun. To obtain this
functional relationship the most simply calculated gun system is chosen, a constant
base pressure gun in which the propelling pressure is maintained constant at a value
of po . (See the following sketch.)

The pressure in the front is approximated from Equation (30-4) as

P = []. (31-1) 2

Newton's law applied to the projectile becomes

M u du )'1(r' +1) (31-22

Adx5  po-pi[+ (2 K-7
This equation may be easily integrated to give the velocity up, for the case of
counterpressure,.

u2 - 2al(p°-pl) [ e; Maf ] (31-3)P, -/J (-/.J + 1) PtII

Dividing up, by the velocity of the projectile with no gas in front up, = 0

where

2p 0 A1 xpUpi~o m Ma2

one obtains

u---o -To J y3:t

where

Ma2 (31-5)
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This equation then, derived for a constant driving pressure, by our hypothesis

should be true for any Run no matter thA varlnl-inn 4f the dr±'-'±. ;rczurc; it 6au
that the percentage change in projectile velocity due to a counterpressure is
essentially only a function of the parameter y .

This equation is plotted in Figure 22. It is applicable until the increasing
pressure in the front becomes equal to the decreasing pressure in the back (as will be
the case for large values of the abscissa y). At that time p. pf and the velocity
of the projectile denoted by uL no longer increases.

PO-

I P
T

PP

Up.
tP

uL

(For an = o gun the velocity uL is seen to be the same as the contact surface
velocity in a shocktube having initially p 0  on one side of the diaphragm and p1
on the other. The method of calculating uL for the x. = M is outlined in
Reference 18.) If uL turns out to be greater than the value of u , as.obtained
from Figure 22, then Figure 22 may be used. If uL is less, up 1 is then taen to

be equal to uL and the value of y at which the projectile attains the velocity
UL is obtained by superimposing a calculated plot of uL/UP= 0 on Figure 22 as
shown-in tM following sketch.

UL

p1
uPI \Up1  no WHER

f YL

The intercept then indicates the value of y where p•f p P and where the
projectile has achieved its constant, limiting velocity.

The effect of the gas pressure in front of the projectile, as obtained from
Figure 22, has been compared to the results of numerical integration for an x. M
Do/D1 = I , gun by the author and has been found to agree very well. It is suspected

that the figure will apply to chambered guns of finite chamber lengths as well.

tL
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PART VII. THE RELATTON OF1 A PRRU'R•h nD ftE I • ,D'ULT "

TO A SHOCKTUBE

Section 32

The Equivalence of a PP Gun With Zero Mass
Projectile to a Shocktube

A preburned propellant gun in which the barrel initially contains a gas (such as
air) is very similar to a shocktube. As shown below, the gun becomes identically the
shocktube in the limiting case when the projectile mass approaches zero,

During the course of teaching unsteady flow in the clabsroom, the author has
observed that the logical process of learning for the student involves a discussion
of first the gun and then the shocktube. After the student understands the gas
dynamics of the PP gun with gas initially in the barrel, the following sequence of
reasoning introduces him to the shocktube.

A PP gun with gas in front of the projectile is visualized before the projectile
has moved, as in the following sketch.

PoV '/ ' Pl, Y1,,a ....
ao

An the projectile increases in velocity, the pressure of the propellant gas directly
behind it decreases and the pressure directly in front of the projectile increases.

4
U p0  pp

p p -

The variation of these pressures with projectile velocity, for example, in the case
of a DO/Dt = I , XG = m , PPIO/gun, is obtained from Equation (30-6) and

Equation (30-3).
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Ppp- Pc • 1 -•"a (32-1)
P0 , 2aO

Pf a P,{1 + YIY1 ( 1 + [ I)U ] j. (32-2)4 \a/ v L 4a, j

In the case of longer and longer barrel lengths, the value of the pressure behind
the projectile approaches that of the pressure in front of the projectile, and the
projectile then reaches practically a constant velocity, designated as ue.

PO Pp Pp 4.... PL
p Pc

p X p= CO PPa"

P f
P1

UL

For example, in the above example a Do/Dt = 1, x, = co , gun this velocity may be
calculated by equating pp to pf in the equations.

The rapidity with which the velocity uL is approached by the projectile is
evident from an examination of Newton's equation for the projectile.

dup/dt = A(pp - pf)/M (32-3)

Por a gun of given Do/D 1 and x, = o, both pp and Pf . and hence their
difference Ap , are essentially functions only of the projectile velocity*.

0 up--
0 UL

* This is true regardless of the length of x0 If the projectile mao approaches zero, in
which case reflections do not reach the projectile until after the projectile in noving at
velocity UL
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Thus,

duPI A 1)(Up) Pf() M APu, (32-4)

From this equation it is se~i that at a given projectile velocity the projectile
acceleration is inversely pftportional to the projectile mass M Thus, the smaller
the mass, the more quickly tie projectile accelerates to the velocity UL

time -

Making M4 smaller may be seen in the following sketch to alter the characteristics
diagram by causing corresponding events tu happen more quickly.

+ 
1

Xx

U LUB UL

U 

SB

~ ~ characteristics

M Large AM Small

The characteristics diagram for small a appears like that for large o except that

time has been contracted (as if one views the large M4 diagram from far away).
The contraction cause. the u-a characteristics in the small M caue to tend to come
from a single point,

Examining Newton's equation again one concludes that at any finite 6D other than
zero the projectile acceleration is infinite in the limit of zero M

II
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M= 0

UL dt

I -

But Ap remains greater than zero until the projectile velocity becomes equal to uL

PO - PI-

T
Up .

00 UL

Hence, the acceleration of an M 0 projectile is infinite for an instant.

t
to Infinity

M=O
dup
dt

-- an instant

time

As a result, a massless projectile attains the velocity UL instantaneously. When
UL is attained, Ap becomes zero. There is then no further change in projectile
velocity.

The time that is required for a shook to form in front of a projectile is obtained
from Equations (29-1) and (29-2) as

t2 a (32-5)shook /I +I (dup/dt)initial
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In this case of a massless projectile it has been demonstrated that t-hA niit.1
acceleration is, for'one instant, infinite. Thus, by Equation (32-5) the shock forms
instantaneously immediately in front of the massless projectile; the strength of this
shock corresponds in strength to the projectile velocity (gab velocity) uL * The
events which took place at different times t. , tn , and tc in the x-t sketches
shown above take place instantaneously in the massless projectile case. In the x-t
plane the shock and projectile paths are thus straight lines emanating from the origin.
In this situation the gun is a shocktube, the projectile becomes a demarcation, known
as a "contact surface" or "interface" between the propellant gas and the gas initially
in the barrel (the driven gas). The propellant gas is known as the "driver gas".

The u-a rarefactions all originate at the origin and are termed "centered
rarefact ions".

S'-C

II nes

U L u.& oa

U UL constant
- o~p etc

-.. ~constant PL 6

constant conditions intn

Subsonic case Supersonic ease

As seen from the captions under the characteristics diagrams, the propellant
behavior in the shocktube may be described as being "subsonic" or "supersonic",
depending on the gas flow immediately behind the projectile, (The slope of a
"u-a" line is obviously negative for subsonic flow and is positive for supersonic
flow.) Whether the gun be chambered or not, in the limit of zero mass of projectile
the gun becomes a shocktube of the same geometry,

Section 33

The Performance of a Shocktube in the Strong Shock Case

To determine the performance of the shocktube one need only equate the pressure
behind the massless projectile to the pressure in front and calculate uL , tile
interface velocity.

If the driven gas is initially at a very low pressure, it will not offer too much
resistance to the massless projectile or interface. In that case the interface would
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ftchi- ......... 7 UL D6ii1sh1 leuut ijhan the escape velocity Uesc Approximating
the interface as u.., the pressure in front of the interface, which is that behind
the shook, may be calculated from the shbck Equation (32-2).

P _ 'Y + 1
ps+ (33-1)

pa 2 a

From the shock relations it may be shown that (see Appendix a)

Pi -/1 (33-2)

for strong shocks, and so

p2 /p 2  . T,2  a 2 - )U

or

a.2 y=(-/&-l)u'.s/2 (33-3)

or

27° (33-4)

S2 " 1(y-1)

Mach number of gas in
front of contact surface.

Thus, the Mach number behind the shock for the strong shock, low p, case is at
most ý21[1y,(•I - 1)].

Section 34

The Significant Difference Between a Gun and Shooktube

Since the shocktube is a gun in the limit of projectile mass going to zero, the
qualitative conclusions reached as to performance of guns apply to shocktubes; the
chambrage effects and real gas effects are the same, the criteria for good performance
are the same. However, there is a significant difference between the gun and
shocktube; namely, In the shocktube the equalization of the pressure between the
front and back of the interface occurs instantaneously; in the gun the equalization
of pressures between the front and back of the projectile requires an infinite time.
This difference manifests itself as a difference in the pressure-velocity relation
for the expanding gas when chambrage exists.

In an xo = co , PP Gun with no chambrage the pressure-velocity relationship behind
the projectile is governed by the condition that all disturbances reaching the

projectile originpte from the propellant gas at its initial rest state. Thus,
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u +0" = o (34-1)

or du + dp/ap = 0 (34-2)

applies to the gas behind the projectile regardless of the fact that the projectile
is or is not accelerating. The same equation applies to the gas behind the interface
of a shocktube, and hence the shocktube gas would be described by the same p-u
relation as for the propellant gas in the Do/D 1 = 1 gun.

hock
U D/Di = I gun

up and shocktube

t Pp
Up pp

Pp

Up -10

Por the chambered gun, disturbances reaching the gas behind the projectile come
from the exit of the transition section, At this point conditions are continuously
changing with time because the projectile continuously accelerates and continuously
sends back disturbances to the transition section, which is thus always lagging behind
in its adjustment to the accelerating projectile.

Projectile Path

Disturbance Disturbance
from • ' from

Projectile Transition Section
To Projectile A

Transition Section

Conditions behind the projectile in the gun are thus determined by the two characteri-
stics equations* applied in the barrel.

It is to be noted that, in both the sun and shocktube cases, the quaai-steady equation
udu + dp/spo m 0 applies, However. for the shocktube. conditions within the transition
sectidn are actually steady: for the gun the equation Is an approximation for the actual
unsteady flow.
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,su I ','i-t - 0 Si3

du -dp/ap 0 (34-4)

In the chambered shocktube, the gas at the exit of the transition section is at a
constant state. Only the disturbance coming from the transition section exit to the
projectile is required to determine the p-u of the gas behind the interface; only
the one differential equation for the downstream disturbance

du + dp/ap = 0 (34-5)

is required.

This difference between gun and shocktube may be seen by applying these equations
to the situation in the following sketch.

C
Projectile

Path A

B

The following equations apply:

UA- UA = s a- o7 (34-6)

uc + 0C = U + *B (34-7)

it is seen that the conditions at B which determine those at the projectile C

depend on those at the projectile at some previous time A . In the case of the
shooktube, conditions at A and C are identical.

Thus the u + a- at the projectile in a chambered gun lags that at the interface
of a shocktube; this situation results in the p-u curve of the shocktube as being
above that of the gun as shown in the following sketches.

Contact Surface
Shock Tube

I p Contact Surface

1 Projectile 010u +0-__ Gun/
010 ' Projectile

Do/D > 1

u-- u---
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T...c. : i.n..icit huamuLta which governs now quickly the conditions in the gun

become almost constant is the dimensionless ratio plao2/poa2 ; this conclusion is
obtained from the expression for dimensionless projectile acceleratinn:

M(du,/dt) = (pp - pf)A

or

with S-PeAt/Me-0

-d "(I + y •}.-'1 P, I( +)•o2Up2 (34-8)

p (y,-.1) 2 \a p_E POj7C 1 l 0 \,

The larger the ratio P0ao/Poa• , the more quickly conditions in the gun become
constant and the more alike will be the p-u curves of gun and shocktube. (Of course,
the difference between the shocktube and gun p-u curves also disappears as the
chambrage becomes less.)

1 Chambered Shocktube

pp PI a P a2 arge

P0 DO/D > I

2l 2Opa Small

The maximum difference between chambered shocktube and gun occurs when the pressure
in front of the diaphragm is zero. Pressure-velocity curves for this case are shown
in Figures 42 (for an ideal gas) and 43 (for an Abel gas with b/(vo-b) equal to 8.09).
It is to be noted that at large u (when conditions become constant in the gun) the
gun curve approaches that of the shocktube.

rI
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PART VIII. THE APPLICARTI.TTV oF THE !S-ENT-Cl-I,. ss•90i i uvus

Section 35

Is the Gun Process Isentropic?

An isentropic process (i.e., a reversible adiabatic process) is one in which the
effects of friction and heat transfer are absent. Isentropicity requires that the
process be infinitesimally slow, that the gradients be infinitesimally small. Since

the expansion process in a gun is a rapid one (of a few milliseconds duration) one
could well question the assumption that in a gun the expansion is isentropic. There
definitely exist gradients of temperature, velocity, and pressure throughout the
quickly expanding propellant gas.

Every real process, of course, is irreversible, for the occurrence of a finite

process is the consequence of the existence of finite gradients. However, it is
realized that the irreversibilities associated with the process of rapid expansion
are inherently smaller than those associated with the process of rapid compression
or of retardation of expansion. This is true because in an expansion process the
gradients within the gas tend to decrease, whereas in the compression process they

increase, resulting in turbulence and shook. Thus, in the case of a gas which is
allowed to expand rapidly from one equilibrium state to another, although the entire
process is foredoomed to be irreversible, most of the irreversibility occurs during
the slowing down part of the process.

Thus, the question is not if the expansion process in a gun is isentropic, but to
what extent is it non-isentropic? This qudry to the present has not been completely

answered; the answer requires both analytical and experimental considerations.

Section 36

Experimental Results for Guns with Heated Propellants

A multitude of data has been obtained in the laboratory and in the field on the
performance of guns using heated propellants. Almost every laboratory has success-

fully and in its own individual manner fitted its own experimental results to its own
theory. Thus, for example, food agreement between theory and experiment has been

reported by AEDCO', 8, General Motors", Ames Research Center 27 ,3 Cards 37 
1. Bax

3

NRL 1 °3 , NOL", and so on (see, for example, Figure 28). However, in almost all cases
comparisons between these gun experiments and theory lack the desired accuracy to

assess the validity of the assumption of isentropicity. The reasons for this lack

are the following:

(a) The initial conditions are usually not those of a preburned propellant gun
and sometimes are very poorly known.

(b) The amount of data obtained during a firing is inadequate; in most cases only
projectile velocity and chamber pressure are measured.
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(C) Usually the data measured lack accuracy.

(d) Usually the propellant gas thermodynamic data are not accurately known.

(e) In the r.Fae of two-stage guns the complexity relative LW a single-stage gun

makes the above deficiencies even more serious.

In sum total, these data indicate that the isentropic theory gives good agreement
with the experimental results at lower velocities; at the higher velocities (12,000
ft/sec to 36,000 ft/sec) the theory yields velocities which seem to be significantly
higher than the experimental velocities.

Section 37

Experiments with a Compressed Gas Laboratory Gun -

Description of the EIMA

It has only been relatively recently that precise experiments have been performed
with guns in the laboratory. This has been accomplished by using a compressed room
temperature gas as a propellant in a carefully controlled manner. An experimental
PP Gun for basic research (designated ERJMA for the initial letters of the descriptive
title "expansion rate measuring apparatus") was conceived and used first at the van der
Waals Laboratory in Amsterdam1' ° ,5, 1920, A copy of this instrument was later installed
at the Institute of Molecular Physics at the University of Maryland 2 1' 2.

ERMA is a constant diameter steel gun of 12, 00 1 0.001 mm diameter, The assembled
ERMA is shown in the following sketch; the projectile holder is shown in Figure 23.

oil for holder

Chamber Electrical Cotntactz

Polystyrene

Microwave
Prolectile Holder Wave Guide

A Barrel
Nitrogen

The propellant gas (usually nitrogen) is slowly bled into the chamber from a reservoir
by a control valve A . The projectile holder, by means of externally applied oil
pressure, restrains the projectile from movement until the pressure is at the desired



71

level in the chamber. The barrel is approximately 50 cm long. In the barrel are

ten small electrical contacts spaced at progressively greater intervals from the
initial projectile position. Each contact serves to measure projectile displacement-
time by completing an electrical cirnuit when the prnjectile passes the contact. In
front of the muzzle is a replaceable polystyrene extension of a wave guide which
transmits the signal for a microwave interferometer system to and from the projectile
as it moves; the microwave signal thus also provides the displacement-time history of
the projectile as it moves in the barrel.

To initiate the movement of the projectile the oil pressure to the projectile
holder is lowered, releasing the projectile. The data measured during the movement
of the projectile along the barrel is thus a series of travel-time (x-t) points.
There are ten points obtained from the electrical contacts and 150 x-t points
obtained from the microwave interferometer. (The two methods of measurement are in
excellent agreement"'.) As the projectile leaves the barrel, it shatters the polystyrene
wave guide extension which may be eplaced for the next firing. The projectile itself
is caught undamaged in a column of cotton waste and re-used. Projectile muzzle
velocities varied from 250 to 350 metres per second.

The propellant used in ERMA was compressed gas (usually nitrogen) up to pressures
of 3,000 atmospheres at room temperature. The pressure and temperature of the compressed
gas in the chamber were precisely known (± 1 atm and ± 0.050 C, respectively) when the
projectile was released. The projectile mass and diameter are also accurately measured.
The position of the projectile, as measured from the 150 microwave data points, is
accurate to ± 0.001 em for a given time. An accurate knowledge of the isentropic data
for the propellant gas was obtained from actual p-v-t measurements; these data
permitted a calculation of the projectile behavior which could be compared to the
experimentally measured x-t points. Although most of the experiments were performed
using a chamber of effectively infinite length, some experiments were done with a
short length chamber.

Section 38

The ERMA Experimental Results

A typical result from one of the ERMA experiments appeared as in the sketch on tho
following page.

More than 200 experiments were performed, and the experimentally obtained projectile
travel was compared to the travel as predicted from the insentropic theory.

The important result obtained from these experiments for projectile velocities of
the order of the initial sound speeds was the following: The experimental projectile
behavior was close to that predicted by the isentropic theory; specifically, the
projectile velocity was from the travel-time measurements determined to be about two
percent lower than isentropic theory would predict,

Thus, for the first time a quantitative determination of the discrepancy between
the isentropic theory and experimental gun performance was made. (After correcting
for the two percent velocity discrepancy by use of a four percent opposing pressure,
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the predicted behavior for a firing with a short chamber in which raflAntinna
occurred was in excellent agreement with experiment (see Fig. 24 and Ref. 23).
Moreover, the travel-time data obtained from the ERMA experiment with argon am a
propellant has been used in an inverse manner to calculate previously unknown
isentroplc gas data 22 .

1.0

CM.

K theory Xpe'XP

0 1 2 3 p
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The discrepancy of two percent in velocity, it must be emphksized, occurred for
the case where the projectile speed was of the order of the initial gas sound speed.
(As indicated below, it is believed that the discrepancy would increase with
increasing projectile speed.) Moreover, in the ERMA case, heat transfer occurs
from the barrel walls to the gas, rather than in the opposite direction as it does
for the usual heated propellant gun. Thus, heat transfer in ERMA tends to increase
the projectile velocity.

The causes of the discrepancy between isentropic theory and experiment have as yet
Ihon completely resolved. The analysis of the ERMA experiment indicated that the
,upancy was a result of the ges-wall boundary-layer friction and heat transfer

-fior'Jeotile-barrel friction. For the ERMA experiments the discrepancy could be
aLpproximately accounted for by assuming counterpressure to be acting on the projectile
equal to four percent of the propelling pressure,

Section 39

Analytical Considerations of the Effects of Non-isentropicity

It is not necessary to examine the small gas layers microscopically to determine
whether they may be considered as isentropically changing their state or not. It is
only necessary to examine microscopically the gradients existing within the gas.
From the phenomenological laws governing the irreversible phenomena caused by such
gradients, it is possible to calculate the effects of the irreversibilities; the

significance of these irreversible effects may be assessed by comparing them to the
other changes occurring during the process.
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(a) The temperature gradients between energy modes

The poRmihiltty exists that during the expansion of a propellant gas the energy
modes are not in equilibrium. However, calculation indicates that for the types of
gas propellants and for the densities and for the expansion times involved in guns,
the various energy modes (vibrational electronic, rotational, dissociation, etc.)
remain substantially in equilibrium with the translational mode. There are thus no
significant time lag effects'.

(b) The viscous effect between gas layers

The force equation applied to a layer of gas with the viscous friction term
included is

au ýU I~ DD /~u

7 + u T x p3ý;px 7x)
For the preburned propellant sun the magnitude of each of the various terms of
Equation (39-1) mLy be calculated (with the assumption of an isentroplc process).
It is found from computation that the viscous gradient term is negligible relative
to the other terms in the equations. For an actual experimental gun (the RRMA gun
referred to in Section 37) the following values were calculated:

4 • *-u
4 a2 -U0.05 X 10"6 kg/rn

'ap
= 10 kg/cm 3

Thus, it is seen that the effect of the gas viscosity within the gas is not important.
(This is true even If turbulence existed within the gas.)

(a) The heat-transfer effect between gas layers

The effect df heat transferred from one part of the gas to another by conduction
can be calculated. The temperature change per unit time at a point within the gas
by conduction is

"BT k V'T

-ax (39-2)
BtPC

where the conductivity k is assumed constant, and ov is employed rather than up
since the isentropic process is more nearly one of constant volume. This temperature
change due to conduction has been calculated for guns and has been found to be
negligible. For example, in the case of an actual experimental gun (the ERMA gun
referred to in Section 37)

There ar'e some exceptions, such as the expansion of room temperature carbon dioxide behind
a light projectile,
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k 'aT

Fbr the 3 X 10-3 seconds of the expansiozn the temperature change was 6 x 10-6 o0
a negligible mount. (This conclusion would remain true even if turbulence existed.)

Md) 7he effect of friction and convective heat transfer between the walls and the gas

Because the propellant gas is In motion relative to the walls of the barrel and
cbaqber, a boundary layer is formed; this boundary layer is a manifestation of the
friction existing between the moving gas and stationary walls; similarly, because of

the temperature difference between the walls and gas, a thermal boundary layer is
present (see following sketch).

Although the boundary layer behavior in shoaktubes has been analyzed rather
successfully for the gsm behind the shook, this is not the case for the driver gas
region in the shocktube. Both for the shooktube and the gun, the driver gsa boundary
layer is completely unsteady; analysis has therefore not been successful. The
transition Reynolds numbers defined by local flow properties and the time a particle
has been in motion appears to be in the region of a million. A review of the
boundary layer work done in shooktubas is given by 0lass'2.

Williams" analyzed the driver gas region of a shooktube on the basis of an

"equivalent @teady pipe flow". He assumed the flow to be fully developed turbulent

flow immediately because of the large Reynolds numbers attained by the driver gas
almost immediately. A similar analysis has been applied to the propellant gas of
a gun". With the assumption of a fully developed turbulent flow the effects of the
boundary layer are obtained in a one-dimensional analysis by assuming the friction
force to be acting at the wall.

Friction
FP A dx' For@*

4-



75

The steady flow turbulent skin friction coefficient is used; thus, the friction
force per unit mass is

4 1 2 (39-3)
pD1 2

where the skin friction coefficient of is taken as for turbulent steady flow

Cf = O.049(ReD,u) 5

T7 obtain the heat loss from the gas, Reynolds analogy is assumed to hold. Thus

Of (r) 3(39-4)

where • is the heat-transfer coefficient, Pr is the Prandtl number and cp is the

specific heat; the rate of heat transfer per unit mass is

4

-Q - - (Trecov - Twall) (39-5)
PD'

GAS LA••.YE

-_pAdx

The entropy change due to the friction and heat transfer is, by Equation (H-9)

of Appendix H,

ds
Td = Fu + . (39-6)

dt

The entropy change equation may be used with the characteristics equations of

Appendix H to obtain the behavior of the gas and projectile. In Reference 26.

however, the entropy change was used to calculate the behavior by use of the von
Neumann-Richtmyer method on an electronic computing machine.

The results of this analysis yield calculated projectile velocities that are below
those obtained for the frictionless, iscuiropic case, Figure 25, taken from

Reference 26, gives some comparative results. It is thought that this analysis

approximates the effects of heat transfer and friction in guns; it is hoped that
future analyses will improve the appruximations. As indicated above, gun experimental
results have not separated the effects of boundary layer induced heat transfer and

friction from that of barrel erosion and projectile friction. Swift"' reports some

experimental and analytical results on convective heat losses in guns.

As indicated above, boundary layer losses increase with increasing velocity (see
Equation (39-3)); these losses reduce the propelling pressure behind the projectile,
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When the propelling force drops to a value equal to the bore friction, no further
acceleration will occur. Experience with existing light gas guns indicates that this
point occurs probably between 200 end 400 calibers. However, by effecting a constant
base pressure, as discussed In PRrt X, the nsumber of calibers would be increased.

(e) Heat loss by Radiation

The heat loss by radiation from the propellant gas in guns is generally negligible.
This conclusion may be reached by calculating the radiation heat loss with the
assumption that the gas radiates like a black body. Such an assumption will yield the
maximum radiative heat loss,*

With the assumption of a black body, the radiated energy Q becomes

Q = KT4(At)As (39-7)

where K is the Stefan-Boltzann constant, At is the time interval during which

radiation occurs, and As is the surface area of the radiating gas; the temperature
of the wall has been assumed negligible in this expression, The radiated energy
transferred from the propellant gas may be set equal to the energy change of the gas.
Thus,

Q = noAT (39-8)

where n is the number of moles, ov the average specific heat, and AT is the
average temperature drop of the propellant gas, Prom Equations (36-7) and (36-8)

the temperature change of the propellant gas becomes

AT - KT4(6t)As (39-9)
no,

Inserting numerical values appropriate to high-speed guns into Equation (38-9)
results in a calculated temperature drop AT which is negligible. Par example, let
us consider the case of a two-stage gun when the pump tube piston has compressed the
hydrogen propellant to the peak values of temperature and pressure indicated below:

p = 300,000 lb/in2

T = 60000 K

v = 5500 cM3

* exact calculation is almost impossible to sake because, in general, the values of
emissivity for propellant gses are unknown.
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A- = 1500 cm
2

n = 250 moles

cv = 8 cal/mole0 K

With K equal to 1.36 x 10-12 cal/cm2 sec(°K) 4 the temperature drop for a period of
two milliseconds (At) is

AT :-- 30K

This is a negligible drop in propellant gas temperature.

Experimental and theoretical results obtained for the reservoirs of hot shot wind
tunnels at AEDC69 confirm the above conclusions; the radiative heat losses are
negligible during the time of interest for the conditions of temperature and density
existing in a PP gun or in a- two-stage gun.

(f) Projectile-barrel friction

The discussion will be restricted to smoothbore guns. The effect of projectile-
barrel friction is evident from experience with light gas guns, This experience
indicates that when the barrel Is greater than 200 to 400 calibers in length, the
projectile may actually decrease in velocity. There is hardly any experimental data
on the magnitude of the bore friction itself.

Some information may be obtained from the resulte of the ERMA experiments. These
experiments were in general, done with well-machined cylindrical projectiles
(12.148 ± 0,0005 mm) in a well-machined barrel (12.188 ± 0.001 mm), The experiments
indicate that, by changing projectile materials ind projectile lubricants, the
discrepancy between isentropic theory and experiment may be somewhat changed. Definite
evidence of projectile friction was noted either by loss of weight of bronze projectiles
or by gradual increase of barrel diameter with hardened steel projectiles. The
accuracy with whih steel projectile diameters were made seemed to have no effect on
the discrepancy. (One group of projectile diameters was machined to ± 0.0002 mm;
the other, to ± 0,0015 mm.)

The closeness of fit between projectile and barrel made no difference in the
discrepancy. (Projectile diameters varied betwoen 12,1.46 and 12.159 m in a barrel
of diameter 12.166 mm)

It was, however, found that the discrepancy between isentropic theory and
experiment could be jignificantly reduced by decreasing the rubbing area of the

projectile. This was done bY machining a projectile of uniformn diameter to form a
projectile with a waist in the center and two rings of contact. This decrease in
rubbing area of about 50 percent resulted in u decrease in velocity discrepancy from

2.4% to 1.6% (see sketch on the following page). One could extrapolate this
result to zero rubbing area and conclude that with projectile friction absent the
velocity loss would be 0.8% or about 1%. One could thus ascribe half of the 2%
velocity discrepancy in the ERMA case to projectile-barrel friction, the other half
to boundary layer. At the present state of ignorance on the role of bore friction,
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it is probably as good us any method of accounting for it by assuming a counter
frictional pressure proportional to the propelling pressure.

?Pp

pp f taken a a
constant

Bore Friction

For very smooth bores a value of 2% (which results in a 1% velocity decrement) is
recommended for this percentage. One ourtainly is left with an unsatisfactory feeling
about the ability to calculate projectile friction for a given gun. What is required
are sore ERMA-type experiments combined with more sophisticated boundary layer
analyses.

Section 40

Conclusions as to Muthods of Accouhting for
Boundary Layer and Projectile Friction

The relatively careful study done in the ERMA experiments indicates that the
isentroplo theory predicts a projectile velocity which is about 2% higher than
achieved experimentally. In this study the propellant was initially at room
temperature; the steel projectile was carefully machined; the projectile velocity
was of the order of -he gas Initial sound speed,
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However, as described above, experimental results for guns using high temperature

larger discrepancy between the experimental results and the isentropic theory. This
discrepancy seems to increase with increasing projectile velocity. One universal
difficulty in calcuiation is that the initial conditions for the experiment are not
well known; in most cases the isentropic equation for the expanding propellant gas is

also not well known.

Experimental and theoretical results indicate that the discrepancy is a result of
boundary layer effects and projectile friction. However, at the present time, the
validity of the methods being employed to account for these effects has not been

satisfactorily demonstrated. , It is for this reason that an approach based on dimension-
less analyses is suggested in Reference 18. If one analyzes the effects of the
irreversibilities on projectile velocity, it is concluded that the ratio of projectile
velocity with frictional effects (boundary layer and projectile friction) Upf to that
without frictional effects !ipf.0 Is mainly a function of

Upf D)

with other dimensionless parameters such as Reynolds number, etc., being considered
Sn4t, essentil4ly important. (The effect of y . it is noted, is accounted for by

lncorporating it into the quantity u /a 0 the parameter found to be significant in
Section 12 for determining theoretioal PP Gun velocities.)

Based on the experimental results with high velocity guns at the US Naval Ordnance

Laboratory, a curve of upf/up. 0 has been plotted versus /u /a 0 and is shown in
Figure 28 and in the following sketch.

t_-
Up with friction Upf

= f

u without friction upf-

0 1.0 2.0 3.0

These experimental results were obtained from single stage 112-0 2 -He propellant guns
and two-stage hydrogen guns; sizes of these guns varied from 0.22 in bore diameter to
4 in bore diameter; actual velocities, from 10,000 to 23,000 ft/sec. Tentatively, it is
proposed that this plot be employed to take account of the frictional and heat-
transfer effects until more careful theoretical-experimental studies better define
these effects. It is to be noted in Figure 26 that below yu Va 0 of 1% the friction
effects appear to be not important. Above this value of /Up/a 0 these effects
become more and more significant. The plot of Figure 26 demonstrates again the desira-
bility of a high sound speed which is seen to cause the frictional effects to be small
relative to the inertia effects in a high-speed gun.



80

sAX. METHODS OF HEATING THE PROPELLANT

Spetion 41

Use of the Heat of a Chemical Reaction

It has been previously demonstrated that th3 basic property of a propellant required
for high projectile velocity is a low acoustic inertia; in the case of an ideal gas
(a reasonable approximation in most cases) this is equivalent to a high initial tem-
perature and low molecular weight (or a high initial sound speed). In practice, the
need for a low molecular weight propellant is satisfied by using helium or hydrogen.
There are a number of ways to increase the propellant gas temperature. One method of
heating the propellant gas is to use the heat produced by a chemical reaction. Often
used is the reaction of hydrogen and oxygen. Thus, the propellant becomes a steam-
heated hydrogen or helium propellant.

The conditions after heat addition of the steam-heated hydiogen or helium propellant
may be calculated as accurately as desired. (Such calculations have been done by
Benoitt°7.) A commonly used reaction is the following:

8 He + 8 H2 + 02 8 He + H2 .h 2 H20 + heat

The resultant propellant mixture has a nolecular weight of 6.5, a temperature around
2700 0 K and a sound speed of 7000 ft/sec. The resultant pressure is about seven times
the initial loading pressure. The average value of y to be used during expansion
is about 1,45. As seen from these values, the sound speed is low relative to the value
for a pure hydrogen or helium propellant at a temperature of 27000 K.

Moreover, the possibility of detonation occurring is present when using H2 and
02 to heat the hydrogen or helium propellant. Experience at the US Naval Ordnance
Laboratory indicates that detonation may be prevented in chambers of diameter less than
about 4 in if the gases are well mixed, the ignition is accomplished simultaneously at
many points, and the reaction is allowed to go to completion before the diaphragm is
ruptured. However, for chambers above 6 in in diameter at initial pressures of the room
temperature mixture above 6000 lb/in2 detonations will 'simot always occur.

Because of the possibility of detonation and the relatively low'sound speed attained,
hydrogen-oxygen to heat chemically the propellant is not widely used. Other disadvan-
tages are the amount and pressure capability of the gas handling equipment required
and the necessity to provide ignition. one advantage is that the chamber to be used
may be relatively small. The use of other chemicals (e.g., compounds of aluminium and
oxygen) to heat has not been very successful. The maximum velocities attained in
H2 - 02 , He guns are around 13,000 ft/sec. Reference 61 describes the performance
of such a gun, See also References 87 and 90.

Section 42

Use of Electrical Arc Heating

Heating hydrogen by means of an arc discharge has been done in a number of
laboratories, For example, see Reference 62. At high imputs of electrical energy,



81

the experimental projectile velocities are less than theoretically nr•d"edDtw* T 4.

speculated that the hydrogen gus propellant is contaminated by metallic electrode
particles, thus increasing the molecular weight of the hydrogen propellant (see
Reference 79). Tne maximum velocities attaincd in arc heated guns are around 18,000
ft/sec. At the present time such guns are not attractive for producing high velocity.

Section 43

Shock Heating

Heating hydrogen, helium, or steam-heated helium by means of a shockwave has been
attempted (see for example, References 27, 28, and 117 for experimental and analytical
results). The shockwave is generated by a propellant in a chamber attached to the
back of the gun (see following sketch).

+ H2 at H2 at low pressure
H199 pr~essure i ..

ReflectedS~~Shock t

S~Heated H2

Results at the US Naval Ordnance Laboratory with such a gun indicated that the
projectile velocities were 25 to 35% below those theoretically predicted. It was
concluded that the shock was not well formed, and that a light piston separating
the H2 from the H2 0 and He would be desirable.

Such a gun using a light piston to separate a driver from the shock-heated helium
was used2" at Ames Research Center, NASA. This gun is shown in the following sketch.

900 gram 127 gram Pr25ect il
powder charge 2.5 grams

}i ~ 411 Helium 2,50 psioi"

• -- 81 10 ... 17i
r 0 . ." ""
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Thue muzi vuluuity obtained by tne z.0 gram projectile with the initial
conditions illustrated above was 22,670 ft/sec. This type of gun is relatively

simple to operate and need not be expensive.

Since the propellant gas is shock-heated, a smaller compression ratio is required

by the shock-heated gun than by a gun using a heavy piston to isentropically compress
the propellant gas. Consequently, the shock-heated propellant gun may be smaller
in length than a gun using isentropic compression, However, the shock-heated gun
will. because of the low inertia of the light piston, not maintain the propellant gas
pressure for as long a time as for the heavy piston isentrupic compression gun.

Moreover, the light piston is not an efficient heater of the propellant gas, as
pointed out by Lemke7 8 and Baker'15; increasing the piston velocity does not produce
"a significantly higher peak temperature, because the higher piston velocity requires
"a higher initial pressure to limit the peak pressure. Experimental results confirm
the fact that the light piston shock-heated gun produces lower projectile velocities
than the heavy piston isentropic compression gun, The two stage piston gun is
discussed below.

Section 44

The Two-Stage Gun - General Description

The first successful light gas gun was developed by the New Mexico School of Mines
around 1948 (see References 29, 88, and 89), Hydrogen was used to propel light
spheres at velocities up to 14,000 ft/sec. The hydrogen was compressed and heated
by a single stroke piston driven by a gunpowder propellant. The barrels used were
0.25 in and 0.38 in diameter,

Piston

P rop s I Iant H 2
sales •..

PUMP TUBE

It was thought that the compression ratio required by such a piston oo•-•s~d
hydrogen gun would make the chamber impractically large for guns wi ti, itot above
the 20 m size. Thus, for a number of years guns using other metbk,> 1, 'ulting the
propellant were used.

Experience through the years, however has demonstrated that to d%t't (.n only
successful method of attaining projectile velocities above 20,000 f is to use

the original concept of the New Mexico School of Mines gun, the conrtpL, of heating a
light gas by means of piston compression, Today's so-called "two-atage" guns use

this concept.
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The ReflHIeTMfA n1F AvpntfA nnnmr~irnv in a *w-al-a- gun i2 27.~

Initially, the pressure p, of the back chamber gas is high reljatLwk , pressure
p, of the pump tube (front chamber) gas (hydrogen or helium). In oiiuLton the high

pressure nas in the chamber ruptures the diaphragm "A" and then pushes the piston of
mass M into the gas in the pump tube, heating it and compressing it; this heating
and compression is effected, generally, by shockwaves' which travel back and forth in
the hydrogen (or helium) between the piston and projectile. When the pressure in the
pump tube reaches a sufficiently high value, the diaphragm "B" separating the pump
tube from the barrel ruptures, and the projectile is propelled along the barrel Dy the
gas in the pump tube. The shocks which exist in the hydrogen (or helium) may travel to
and be reflected from the projectile.

It is possible by this method to obtain much higher sound speeds in the compressed

gas in the pump tube than could be achieved in the propellant gas in a single chamber
by heating it chemically or electrically. Thus, the gas in the pump tube roaches a
higher value o, sound speed than the value of sound speed a 0 in the chamber. Of

course, all the energy imparted to the gas in the pump tube comes from the gas in the
back chamber; the piston provides an efficient means to transfer this energy; its
inertia makes it possible to compress the gas in front to very high'internal energies
at the expense of the internal energy of the gas in the back of the piston.

The two-stage gun not only affords a method of heating the propellant gas, but also
of maintaining the pressure at a conatant value directly behind the projectile, To
so maintain the pressure constant behind the projectile requires that the pressure in
the pump tube increase with time at ft specified rate. Thus, the proper movement of
the piston in the two-stage gun may effect this rate.

Ppump tube Plp

The application of the two-stage gun to maintain the propelling pressure constant was
suggested by Curtis3s and independently by Wilenius 9 7 and Winkler35; it is discussed
in Part X, "The Constant Base Pressure Gun",

* The strength of the shocks depends on the magnitude of the piston speed; light pistons,
traveling at high speeds, produce strong shocks; heavy pistons, traveling at low speeds,

produce weak shocks. (The magnitude of the piston speed is taken relative to the sound
speed of the gas in front of the piston.)
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Section 45

'Me Two-Stage gun - Approximate Calculation Method

To calculate by hand the events which occur in such a gun it a tedionA, Impractical
task. The occurrence of shocks complicates the calculation considerably. The
methods outlined previously in this monograph may be applied to the calculation as
indicated in the following sketches.*

Quasi - Steady Shock Equations
Equations

D (u__ _) =0

Dt

BEFORE PROJECTILE RELEASE

D (u~o')

_-" 0 Shock Equations
rFFriction

S' / /,-- .... /• ,.I• • •. Cc~rrection

Quasi - Steady Equations

AFTER PROJECTILE RELEASE

To simplify the calculation for hand computation, the following approximate
method of analynis has been advantageously used for either a light piston (shook
compression) or a heavy piston (isentropic campression) gunt.

* It in assumed that the back chamber contains a preburned propellant, If, however, powder
propellant is used, conventional ballistic methods (see, for example Reference 30) may be
employed to calculate the pressure behind the piston. For a more exact analysis of a gun
with a burning propellant, see Oarriere3 .

C ioe should note References 17 and 78 through 83, where approximate analysees are presented
for a two-stage gun system. Also see Reference 117 for the shook-heated came.
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(a) The initial phase of the motion of the piston may be calculated by applying
the results for the preburned propellant gun performance (e.g., Figure 21) to the

piston and accountinx for the propellant gas in front (Fig. 22).

GGF/M

Vpj 0 .21

VP 1 U
V PlI = FIG . 22 "* - "

(b) The piston position Y3 , velocity v, , when the reflected shook has traveled

back to the piston can be calculated, as can the conditions in front of the piston,

by using the V-Y curve and the shock equations. (See Appendix 0).

j*********-**********3~ Reflected

tV

v P Shock

P37 v
V vu = o

V3 p1 L1=P3(Lj Y3)

(o) Since at this time the velocity of the gas in state 3 is zero (and thus the

gas kinetic energy is zero), it is convenient to apply the first law of thermodynamics
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f~n lfhA ova tam tnnn1.4afin nf 4-hn "ni- a" man in frnt cf tht pito'0 thc
first law is applied between the state existing in diagram C of Figure 27
(time to) and any subsequent state (say, state 4) of the system until the
projectile is released. several simplifying assumptions are made:

(i) The gas in front changes state isentropically after tc (see previous
footnote*).

(ii) The kinetic energy of the gas at any time after ta is equal to GV2/6

(iii) The work due to the pressure behind the piston is negligible.

Assumption (i) is a good approximation because the irreversibility association
with the second and third shock reflections is small, as may be calculated by
the methods of Referenice 32. Assumption (ii) is deduced from the approximation
of a linear velocity distribution which is valid'for low gas velocities (see
Appendix P). Assumption (iii) agrees well with numerical results from electronic
computing machines (see Figure 28).

V4

First Law: iV//2 + IT, MV!/2 + GcpT4 + OV'/8

Ysentroplo -.I
Equations: (p/p) =( p 4/ p 3 T 4/ T 3

Prom these three equations, the three unknowns T4 , p4 , and V, may be obtained,
the state 4 being at any time subsequent to time to but before the projectile has
been released.

(d) The next phase of the calculation is for the time period after projectile release.
It is assumed for simplicity that sonic flow exists in the barrel entrance. The
piston motion is determined with the aid of Newton's equation by a step-by-step
numerical process, as shown below.

In some cues (e.g., for light piston oases) it may be desirable to calculate the conditions
at the tin when the shock has gone forth and back a second time,
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pt- ' A L *
LI

.V B GB

The applicable equations are
i[V' - VA/2 - PO(YB A

O ( I^- (pu*,A,)8t

VB/PA = (PB/PA)" [G1 (LI -/A)/GB(LI - Yn)'),

The three equations permit, for a given St , the solution for the three unknowns
OB, Y., and V5.

(e) Finally, from (d) one may obtain the value for the barrel entrance condition
of the sum u + o an a function of time. Since sonic conditions are assumed to
exist there,

u + Or U* u+ cr Z- •+ 1

U + a,+ o*

AT BARREL ENTRANCE

tt
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this sum remains constant along u + a disturbances which reach the
projectile at a time At after they leave the barrel entrance position.

aI
t t

tt
The time interval 6t is approximated by assuming the u + a characteristic

to be a straight line. Thus,

tp t* 6 t =X
i{'[u*(t*) + a*(t*)) + (u(tp) + aptp)J}

2xp

* z* + up(t ) +2 2/( 1)

Newton's equation is applicable to the projectile,

ddu dupMMu P ppA I~ P 0 At.
dt Vd p\O

Along the u + a characteristic

uu* 0-* = u +p 0 +1
p' 2

The complete projectile motion may be obtained by a step-by-step numerical procedure

using the three equations above. The effect of friction may be accounted for by using
Figure 22.

The approximate method outlined in this section yields projectile velocities which

agree well with the results of more sophisticated methods. For a heavy piston case
the method above becomes equivalent to that described by Charters in Reference 83

(or Reference 86). However, not only is the calculation very time-consuming, it does
not yield needed information about the details of the pressure experienced by the

projectile. In the actual situation shocks, neglected in the approximation after
the projectile is released, travel back and forth between piston and projlectile.
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These shocks, although sometimes weak, cause sharp pressure peaks which may cause
projectile mechanical failure. In some cases predictions by approximate methods of

the type outlined herc for the peak pressure experienued by the projectile have been
found to be in error by a factor as high as four, This is one reason that the use of
electronic computers to calculate more exactly the performance of a two-stage gun

becomes highly desirable.

Section 46

The Two-Stage Gun - Performance Calculation
by Electronic Computing Machines

To avoid the tediousness of hand calculation and to better determine the actual
pressure variations occurring, it is necessary to use electronic computers for two-stage
gun calculations. The speed of these machines is particularly advantageous when it Is
necessary to select loading conditions to yield a maximum projectile velocity. In a
given two-stage gun which is to propel a given mass projectile of given pressure
capability, it becomes necessary to select the following parameters!

(a) The back chamber conditions.

(b) The pump tube conditions.

and

(c) The piston mass,

(d) The projectile release pressure.

The number of possibilities wakes the electronic computer invaluable to use to select
the optimum parameters. This is particularly so because as of the present time there
are few general rules for guidance in the selection of these parameters, the optimum
values depending on the particular two-stage gun geometry and pressure capabilities,

(If, however, one is designing a two-stage gun "from scratch" to propel a given
projectile at a given velocity, the use of the "constant base pressure" ideas outlined

In Section 47 yields a two-stage gun design without the necessity of as many trials.)

The most suitable scheme to the present for the electronic computer application to
the two-stage gun is the one-dimensional Lagrangian scheme discussed in Section 27.

It is based on the "q" method, as devised by von Neumann and Richtmyer 1 2 13. The code
solves quasi-one-dimensional. hydrodynamic problems, i.e., it will handle cases of
one-divensional flow through ducts of varying cross section. Automatic treatment of

the shook by the "q" method lends itself nicely to the solution of multiple shook
systems such as occur in the two-stage light gas gun. Any equation of state say be
used for the gas. This scheme Is presently being used at the US Naval Ordnance
LaboratorY' 4' I06 and Aberdeen Proving around"3.

Another computer scheme using the method of characteristics and the shock equations
is in use by Republic Aviation Corporation". This scheme appears applicable to the
two-stage gun problem,
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For a given two-stage gun, firing a given projectile, the types of results one
obtains by using the computing machine when attempting to optimize performance are
as shown in the following sketch.

U PP

proi

vel. (Pl)

PISTON MASS = M INITIAL PUMP TUBE PRESS Pl

MAX pl (p) MAX -- MAX. PUMP TUBE PRESS -,

J.1

As mentioned before, the form of these curves varies greatly with~the geometry of
the two-stage gun, Therefore, each gun system geometry will have specific
characteristics, In general, the larger the pump tube, the better will be the
performance of a two-stage guu.

The calculations also indicate that preheating an ideal propellant gas in the
pump tube is advantageous (see for example, References 82 or 95).

U P

MAX PUMP TUBE PRESSURE -----

Experimental results to date are not conclusive as to the advantage of preheating the
propellant gas. AEDC reported8 2 an increase in projectile velocity from 27,500 ft/se?
to 30,000 ft/sec by doubling the propellant gas initial temperature, In contrast,
Cablel'e reported no gain by heating to about 4000 K. (Thus, the increase in
experimental projectile velocity due to preheating is often less than predicted by
calculation. It is here speculated that this deficit is partially* due to the

* For long pump tubes there Wy occur convective heat losses which would contribute to the
degradation of gun performance.
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assumption that the propellant gas is an ideal gas. Actmually, in many cases the
propellant gas is sufficiently dense that the intermolecular forces are signiftnant;
in these instances, as shown below (see, e.g,, Sections 5. and 64-) the dense real-gas
propellant produces a higher projectile velocity than an ideal gas propellant. By
preheating the propellant the effects of the intermolecular forces are reduced;
consequently, less gain in velocity is experimentally achieved by preheating than
expected from the calculations done for an ideal-gas propellant.)

One may, 'in principle attain the benefits of preheating by increasing the pump tube
volume as seen in the following sketch.

It FOR SAME GUN
PERFORMANCE

PUMP TUBE
VOLUME

INITIAL PUMP TUBE GAS TEMPERATURE -

T1 ypioal calculated and experimental performance curves for two-stage guns are
shown in Figure 28; other performance curves are given by Baer 3 , Stephenseneel 81, 82
Pisoeai 1 " and Swift". A sketch of one of the US Naval Ordnance Laboratory two-
stage guns is shown also in Figure 28. The barrel of this gun is two inches in
internal diameter.

As mentioned before, almost every laboratory has successfully, and in its own
individual. manner, fitted its own experimental two-stage gun results to its own theory.
Thus, for example, good agreement between theory and experiment have been reported
in References 81, 82, 94, 27, 83, 37, 33, 103, and 14 (See P'ig.,28). However, as
previously noted, these comparisons, in almost all cases, lack the necessary accuracy
to assess the validity of the theory used.
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X. THE CONSTANT BASE PRESSURE GUN

Section 47

The Concept of Maintaining a Constant Base Pressure

la a preburned propellant gun the value of the maximum pressure experienced by the
projectile is the same as the value of the maximum pressure experienced in the chamber.
In such a gun the pressure of the gas behind the projectile decreases as the projectile
accelerates in the gun barrel. This is seen from the equation

2T

pJ +e - (47-1)
2a° 

J

which expresses the pressure as a function of the projectile velocity in the
preburned propellant gun.

t .

press P ~o
at L . PP GUN PP
point
in

chamber

t-

Only in the unattainable limit of infinite initial sound speed does the pressure not
decrease behind the projectile in a PP gun.

It would be, of course, extremely desirable to maintain the pressure behind the
projectile at a constant value. Such a possibility exists for a gun in which the
pressure in the chamber is not limited to the maximum value experienced by the
projectile, but could be increased as desired during the travel of the projectile.

t NOT A
PRESSURE AT
POINT IN Pp
CHAMBER

t-- t-0



Such a gun would not be a preburned propellant gun; it might be a gun in which the

prupollant continued to burn during the projectile motion: it might be a two-stage
gun in which the piston continued to increase the pump tube pressure during the
projectile motion. The latter concept has been suggested by Curtis 38 , Wilenius 97 , and
independently by Winkler 3 7 .

Section 48

Deducing a Gas Flow Which Maintains the Base Pressure
Constant (The "Simill ity Solution")

How should the pressure vary in the chamber so as to maintain the pressure constant
behind the projectile? A partial answer to this query is provided by the "similarity
solution" of Stanyukovitch"'; also see Smith35, Curtis and Charters 38 ' 3 9

,57,94,

Wilenius 3 " 92, and Winkler 3 6 . This solution assumes that the gas velocity in the
constant diameter barrel is only a function of time (not of distance). Thus,

u = u(t) (48-1)

It may be demonstrated that this assumption yields a constant base pressure gas flow
as desired. A different and more logical approach than starting from the assumption
of Equation (48-1) is given below.

The quest is for a gas flow which will yield a constant pressure behind the
projectile. One possibility is to consider the situation in which the pressure is
not only constant for the gas layer directly behind the projectile, but is constant
(although a different constant) for each gas layer. Thus, for this situation it is
assumed that in the constant diameter flow

ap "p
- T = 0 (48-2)

which states that the pressure does not change along a particle path. (See

Appendix A). This then is the basic assumption made.

If it is now assumed that the gas changed state isentropically, then

P =P(P)

alone, and (48-3)

a a(p)J

alone, etc. Thus, since p does not change along a particle path, each of the other
thermodynamic properties does not change along a particle path. This is expressed in
equation form from (48-2) and (48-3) to yield

+up 4p-+U• 0 (48-4)
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•a •a
-:+u = 0 (48-5)
*t t. x

and so on for all the other thermodynamic properties.

The applicable one-dimensional unsteady equations of continuity and momentum are

Bpu 'ap
a - + - -- 0 ( 4 8 -6 )
•x •t

au au _ ?p
7- + u = - (48-7)

Inserting the requirement for constant density of a gas layer Equation (48-4) into
the continuity Equation (48-6) results in

P a 0 (48-8)

Thus, from Equation (48-8), either the gas density is zero,

p = 0 (48-9)

or the gas velocity is a funotion of time alone, i.e.,

u = u(t) . (48-10)

Either possibility will yield a constant base pressure gun.

Obtaining a zero density gas (and hence an infinite sound speed gas) is not

realizeable in practice and this possibility will not be further considered.

The second possibility, that the gas velocity be a function of time alone,
constitutes the similarity solution of Stanyokovitch and Smith and will be further

considered.

If Equation (48-10) is inserted into the momentum Equation (48-7), there is

obtained

du 1 --- (48-11)

dt p 'x

Since the left hand side of this equation, by Equation (48-10), is a function of

time t alone and the right side, in general, would be a function of x and t

it must be that each side of Equation (48-11) is equal to a constant, say, "a". Thus,

du 1i•p
du - B = O. (48-12)dt 'a•x
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and, hence, by integration with u = 0 at t n

u = cxt (48-13)

Thus, the gas velocity is proportional to time in this case in which the thermodynamic
properties do not change along a particle path.

In particular, the path of the particle which originates at x = 0 , t = 0 may be
chosen as the path of a projectile. The unchanging pressure and sound speed of the
gas behind this projectile are denoted as p0  and ao , respectively. With the
assumption that the barrel is evacuated in front of the projectile, the propelling
pressure is constant (equal to p 0 ), resulting in a constant base pressure projectile.
Newton's law for the projectile becomes

dup =

dt

or (48-14)

up = POAt/M

By comparing this result with the Equation (48-13) for velonity for any gas particle,
it is seen that

M p=OA/M (48-15)

The travel-time history af the projectile is obtained directly by the integration
of Equation (48-14)

2___ at 2

xp AV2  
- (48-16)

2M 2

and

xP= (48-17)2

The essential thermodynamic property which determines the magnitude of the pressure
drop between the projectile and the x = 0 point may be deduced from the momentum
equation (48-12). If this equation is integrated, there is obtained for any given
time

J " = dXp (48-18)

p0

where p1 is the pressure at the x =0 point.
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P• PRESSURE IN BARREL
PAT A GIVEN TIME

PP

dp/p = (48-19)

po o

Equation (48-19) demonstrates that a propellant with a low p as a function of p is

desired in order to have a low pressure Pi at x = 0 , (This is the same
characteristic desired for a propellant in a steady flow expansion from a preburned gun
chamber to the barrel).

HIGH P(p)

Pi p( p)

Xp,, up, or t

This is true for an ideal or non-ideal gas. In the case of an ideal gas, low density
is equivalent to a high initial sound speed (or low initial density).

One might also integrate Equation (48-12) differently to determine the pressure
difference between the projectile and the x = 0 position. Thus,

Xp GcxP- p Po dx = (48-20)
= 

A

where 0 is the gas mass between x = 0 and the projectile. It is seen that the
pressure difference Is proportional to the mass of gas behind the projectile.
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Low 00
high a0

Pi

infinite ao

Xp, Up, or t It

Section 49

The Variation of Gas Properties for the
Similarity Solution

The fact that pressure does not change along a particle path is expressed by the
equation

'p ap • +U~x" 9 ,(49-1)

The expression for the differential pressure change

•p •p
dp - dt +- dx (49-2)

Bt Bx

becomes, by substitution of Equation (49-i),

dp -u -D dt +- dx (49-3)

If the Equation (48-12) for the spacial pressure gradient and Equation (48-13) for the
velocity u are substituted into Equation (49-3), there results

dp =. O
2tdt - o.dx (49-4)

P

Upon integration from x = 0 at t = 0 * Equation (49-4) becomes

dp ad2t 2

S 2(49-5)
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For an isentropic process

dli z dP/p (49-6)

so that Equation (48-12) becomes, in terms of enthalpy,

Q2t 2
h - h0 =----- O (49-7)

2

where h. is the value of enthalpy at x = 0 , t = 0 . Equation (49-7) describes
the variation of enthalpy necessary for the similarity solution. It applies to any
gas with any equation of state.

Unless otherwise noted, the discussion will now be restricted to ideal gases, It
is to be remarked, however, that real gas effects will change the quantitative
results below. (See Section 57 below; also see Smith3", for discussion of the effect
of coirolume). For an ideal gas the enthalpy may be readily put in terms of sound
speed, pressure, or temperature. Thus, Equation (49-7) becomes

2y1 + Y--1) - (40-8)

a0 ) 0

1 = l+-- - (49-10)po a0  L2J]
TO a0

where p0 * as , and T, are values of pressure, sound speed, and temperature at
t = 0, and x= 0 ,I

It becomes apparent that a constant base pressure equal to p0  may be achieved on
the back of a projectile if the enthalpy is altered as dictated by Equation (49-7),
or equivalently if the pressure or the other variables are altered as shown in
Equations (49-8), (49-9), and (49-10). Thus, for the position in the barrel where
x = 0 , which shall be designated by the subscript "i", pressures should increase
with time in the manner prescribed by Equation (49-9).

V

p0 t 2a i (49-11)

It is noted that the magnitude of the rise in pressure as a function of time is
dependent on the sound speed a0
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t=O

PO.•

T high
03

0p)1Pi

~t t- t

t -i t, Po0

Bound speed and temperature will correspondingly increase with time at the position

x• = 0 1•

( 0 1. 2+ (Y-) 2t(49-12)
TOT/ 2a,0 -

where the subscript "I" designates the position x = 0

Other possibilities exist for attaining a constant base pressure gun than varying
conditions at x = 0 , Thus, conditions may be varied at any given x or any given
time t so an to satisfy Equations (49-8) through (49-10), For example, the
pressure may be varied along the barrel at the time t 0 to satisfy Equation (49-9).

ap j - 1) a (49-13)

However, In practice the method employed has been to attempt to vary pressure at a
given point (x = 0) as prescribed by Equation (49-11).

Section 50

The Path of Characteristics in Eulerian Coordinates
for an Ideal Oas

The equations for the characteristic lines may be obtained by integrating the
equations describing the slopes. Thus, letting the symbols e and r denote the
x , t coordinates of the characteristic lines, one has for the "u + a" characteristic
lines

2
u + - 1 a,, " UI + ai (50-1)
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d9 U 3 - -- Y u aOO (50-2)

and -Y __ 
2  1a

' •ea'o ( 3- ') F 2 oo 1
T- +- (50-3)

(Y-1)Oa (Y -i) rx(s -y L (-vj

where the subscript I denotes the conditions along x = 0 , and where a,, is
defined as the sound speed of the gas on the characteristics at t = 0 and is a
function of the coordinate x00 of the charactoristic at this time. Thus, from
Equation (50-3) with t = 0

line a
X00 (50-4)

It in noted from Equation (50-3) that every charaeteristic line is an identical
parabola whose vertex is displaced from characteristic to charaoteristic. (This was
first noted by Winkler"). The equation for the vertex is

xv = (2-1) (v-)tv (50-5)

whore

tv ý 0

Similarly, for the "u - a" oharacteristics one finds

2
U - " a ui - 1 (50-8)

df 3 -•
--- = u-a U - Ro (50-7)dr" 2 " °

and

A 2 c&3 r 2!a 1
f - D + ---- - (50-8)

CIO-1) ct(y"- 1) (3 -/) 4

where aoo Is the sound speed of the gas on the "u - a" characteristic at t = 0 at
which point x = xoo (described also by Equation (50-3)), It is seen that the
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"lu - a" characteristic lines are also identical paraboles which are displaced so that
t~hA vAvlfArqn hiA 1Rrnni thA rarth

a2  -

c('Y -1) 2(y- 1) (09

where tv;, 0 .Moreover, most remarkably, the "u - a" parabolas are identical to the

"Iu + a" parabolas.

t u + a I ines

a00

tt-.
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is tangent to the t axis (x = 0) at a time which will be designated at t**
Since the slope of the "u - a" line is zero at this point, M , the flow is sonic.

ur* = a* (50-10)

Inserting into this equation the expressions for u (Equation (48-10)) and for a,
(Equation (49-12)) at x 0 , one obtains

tr* = 2 a° 5-1

at which time

ur: = tr- ao (50-12)

The value of aoo for this characteristic is obtained by inserting Equation (50-12)
into Equation (50-6).

= ao ,(50-13)

00 2

Substituting this into Equation (50-7) yields

3r /a 1]2i a (50-14)

as the equation for this characteristic. For this "u - a" characteristic, u - a

is a constant which may be evaluated from Equation (50-12) as

Uv- r -7 o0 . (50-18)

The pressure at time tr* is evaluated from Equation (49-9) as

2

V 0 Do 7_ (50-16)

This characteristic intersects the projectile path at a time equal to

aQ (50-17)t+ 2, Y
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Projectile Path

00

go

F
t~* -t

o00 0 (3- y)/2

Section 51

Do Socks Occur?

It is seem from an examination of the expression for the slope of the "u + a"
characteristics line (Equation (50-2)) that these charaottristios tend to converge.
(This is also evident from a sketch in the x-t plane). Hence, it becomes of interest
to determine if the characteristics lines will intersect to form a shock.

Examination of the equations for the characteristics in the case when no projectile
is present reveals that a shock is not formed. (This conclusion iH obvious if one
looks at the characteristics in the Lagrangian coordinate system - see below),

Although the characteristics do not converge to form a shook, they do become tangent
to a parabolic envelope; the equation of this envelope (obtained from the condition
(d0/daoo) 7 = 0 , Is

a• , 2  ,Z > f 0 or u + a lines

C8Nv + (51-1)
2 ctIy-l) 0 for u a lines|
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Thus, part of this parabolic envelopc is parallel to the path which the projectile

-, - if. i 5 aneau ot it.

C' t'his envelope the pressure p , sound speed a temperature T .etc., are all
zero. Calculation demonstrates that beyond the envelIope the quantities p , T . a,
etc., .•.re imaginary or negative. Thus, the region beyond the envelope does not exist

2
,.,, ao _a EU + ao

in r.aitylin

Region not realiz'eable ENV, a(Y'-1 )

SproPecttleipath

Section 52

Paths of Characteristics in Lagrangian Coordinates
for the Ideal Gas

The equations of the characteristics are particularly simple when expressed in the
Lagrangian coordinate system. The continuity, momentum and characteristics equations
are the following (See nourant and Friedrichs be):

in reality
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p ) =(52-1)

- =(- (52-2)

7t (u ±) + ap• (u•± a) 0 (52-3)

where

x iH, t)
H = f pdx

Jx(o,t)

the mass per unit area of gas from a given point In the flow to any other point. It

is noted that the slope of the characteristics In the H-t plane is equal to the
acoustic impedance (± ap).

The assumption that density is unchanging for a particle is expressed as

(-) =0 (52-4)

from which, by the continuity equation (52-1),

=0 (52-5)

or

u = u(t) alone. 
(52-6)

The momentum equation then becomes

= =a (52-7)

where cx is a constant. Thus,

u a t (52-8)

and

p-p = -Ho (52-9)
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nr

p HA
S--1 - -(52-10)

p0  M

where H is taken equal to zero when p pc Thus, the H 0 gas layer is the

layer adjacent to the projectile with pressure equal to p 0 . The mass of gas behind
the projectile to the point in question, -HA, may be designated "a". Equation (52-10)
then becomes

p/p 0  = 1 + G/M (52-10)

The equations for the u + a characteristics are obtained from the relevant

relation

U +c- = tp + 0o (52-11)

where tP is the time that the u + a characteristic intersects the projectile

path (the H = 0 path). Since

S- 2-/ HA (52-12)

"ao = -

for the "u + a" characteristic, Equation (52-1i) becomes

-2y

I -- = + (t - t (52-13)
M I o

It is interesting to note that in a system of Lagrangian coordinates, using a linear
coordinate (e.g., x 0,) rather than H , these characteristic curves would be
parabolas. This equation may be differentiated to obtain the slope of the
characteristic on the H-t diagram

v+ I

- = ao (t ap (52-14)

= a~po [• -- . (52-15)

The "u + a" characteristics are thus seen to be identical curves which are displaced

one from the other in the t direction by an amount equal to Atp
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a

H projectile path
A; t-- p

0

Similarly, the equation for the u - a characteristics is obtained from the

equation

u 0= at -Co (52-16)

and is

2Vy

- = -T (t- t) (52-17)

The slope is

7+I

dHY
t - ap a (tp- t (52-18)

Y+ 1

- -aop - (52-19)

Gas ProjectileA Path
uX=a

lines inu-

I inelines
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Thus, the "u - a" characteristics are identical curves displaced in the t direction
by L•t . Moreover, tney are seen to be tne same curve as the "u + a" curve but
reflected about the H axis.

Both sets of characteristics form an envelope about the line H = M/A on which
pressure, temperature, density, and sound speed are zero. In the sketch of the
characteristics are also shown the projectile path (H = 0) and the path of the
x = 0 line,

Section 53

Pressure Requirements in a Chambered Gun to Obtain
a Constant Base Pressure- Subsonic Flow, Ideal Gas

It appears that one practical method of partially satisfying the requirements of
the similarity solution is to use a chambered gun; the endeavor could then be made to
increase the pressure in the chamber so as to increase the pressure at the entry to
barrel as prescribed by the similarity solution, Equation (49-11).

[ ' 2 t7

Correspondingly, the temperature and sound speed at the barrel inlet would vary as
given by Equation (49-12).

-n + _ (53-2)
T a a 1+ 2ao"

where the subscript "o" refers to the constant conditions behind the projectile.

C c 
P o0

The conditions in the chamber, denoted by the subscript "c", may be related to those
at the barrel inlet by the quasi-steady equations of energy and continuity. If the
area ratio Ac/A 1  is sufficiently large

2 22 2 2a + u_ a0  (53-3)

'Yi
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From (53-2) and u, -cti , Equation (53-3) becomes

a 2 = a 2 + (Y-1) • 2t• (53-4)

from which, by the isentropic relations, the chamber pressure variation is obtained as

V

o - + - t (53-5)
Po a•

The flow at the entry to barrel becomes sonic (see Equations (50-10) and (50-11)) at

t** = 2 ao(36

at which time

** ** Mt** ao (53-7)
U1  3 1 et a

and

V

and

Do-Y+ Y.1- (53.o)

p I

Po"I

ti**
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When the conditions at "i" become sonic, further pressure increases in the chamber
will cause the velocity to increase at "i" but the flow will remain sonic for
isentropie flow The similarity solution, however, assumes that the flow becomes
supersonic at the barrel inlet, a seen from the equation for the inlet Mach number.

ai} (a /at1 )
2 + (y_1)/2

S---Similarity solution

chambered gun

0 • I t* t --.

Thus, for isentropic flow in a chambered gun, the similarity solution requirements
cannot be satisfied after sonic flow has been reached. Thus, Equations (53-6) through
(53-9) hold only for times less than t* for a chambered gun.

Section 54

Pressure Requirements in a Chaiberqd Gun to Obtain a

Constant Base Pressure After Sonic Flow Is Reached for an Ideal Gas

The requirements for constant base pressure in a chambered gun after sonic flow
is reached at the barrel entry may be obtained by use of the method of characteristics.
The x-t diagram sketched on the following page shows a few characteristics,

The similarity solution applies to the region A-B-t*. The path of the "u + a"
characteristic B-C-t** which is the boundary of this region may be obtained, if
desired, from Equations (50-1) and (50-3). The time tB , when this characteristic
intersects the projectile path, may be directly calculated from the characteristic
relation

2 2
u + - a* = uB +os = atb + -a (54--)

from which, by equation (50-11),

- - " - (54-2)
(/-1)a L 2 V 3  J

7 Tis is not necessarily true for non-isentropic flow. It Is possible to obtain supersonic
flow at the inlet by raisina the pressure so as to cause shocks which enter the barrel.
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projectile
path

PO B

U-0
characteristic

SA

C

line ai

It is to be noted that at this time t the projectile is traveling at a speed.equal
to

uB Mt tB (54-3)

with a "Mach number" uB/aO equal to

U3  2 '- -, (54-4)
a0  (-1) 2

For a y = 1.4 gas this Mach number is 1.70. The similarity solution is thus
satisfied until the projectile reaches this Mach number.

The flow conditions outside of the region A-B-t** may be obtained using the
characteristic equations

D (u o = 0 (54-5)
Dt

and the following boundary conditions:

At x 0, tI ±> tr*: u1 =ui = a = (54-6)

and at the projectile

up = o(tp , = 'p = o (54-7)

The star (,) indicates sonic flow; the subscript "p" indicates the projectile.
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AZLt•i Lim euu , weounudtions at tne iniez are reiated to those at the
projectile by consideration of the "u + a" characteristics. For each such
characteristic the sum of u + o- at the barrel inlet may be related to that directly
behind the projectile

* + U +a* = u +o0  (54-8)

or

a*ai = +- U 2 _ - I ;Ct 2N

ao *y+l + a0  +l a \o

From this follows
- ~27

P0  y-1 (a0  (54-10)"' po \a

Equation (54-10) expresses the relation between barrel inlet pressure p* and the
corresponding time along the u + a disturbance at the projectile t9. However, it
is desired to obtain the value of this pressure versus time, ti . at the barrel
inlet. Thus, the problem resolves itself into determining the relationship between
the barrel inlet time ti and the projectile time tp on each u + a characteristic.

, E
x

D

p/\
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The sketch shows the x-t diagram applicable to a chambered gun. The line t*-R
in the U r I•t su'c-i1 LilA-oulit the point t*- . The line C-E is the
path of a u + a characteristic.

If one attempts a numerical solution by the method of characteristics in the region
E-B-t*-R , it becomes quickly obvious that the conditions in this region are those of
the similarity solution. For example, point 0 is determined from points E and B
both of which follow the similarity solution. Hence, so also will point G
(Smith35 , refers to the characteristic t*-R as the "limiting characteristic").
Thus, the problem reduces itself to a numerical characteristics solution in the region
R-t*-S . The solution includes the sought-after relation between ti d ta n
This relation has been obtained numerically in Rcference 35 and also, approximately
in Reference 37. An exact analytical solution for the region R-t**-S has been
obtained by Somes 96 , for a - = 5/3 propellant gas (see Equation (54-15)).

The results for pressure at the barrel inlet p1  and in the chamber p0
assuming large ohambrage, are given In Figures 29 and 30 for various y's , It is to
be noted that after t* the pressure required at the barrel inlet is higher than
would have been required by the similarity solution in a gun with no chambrage.

CHARACTERISTICS
SOLUTION (CHAMBRAGE)

SIMILARITY
SOLUTION

,tI

S..SIMILARITY

U1 tit

(p1  j) CHARACT

) ..

I1
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Calculation also indicates that after t•* the velocity at the barrel inlet becomes
quite a bit less than given by the similarity solution and that the mass flow into the
barrel is only slightly less than the similarity solution result.

It is again seen that, if the initial sound speed for an ideal gas propellant is
high, the pressure rise in the chamber is correspondingly low.

Pc

50 ----

The results cited above for the ideal gas may be obtained in an approximate manner
Sas related in Reference 37. There it is pointed out that the determination of the

relation between ti and t on the same u + a characteristic may be obtained
approximately without resort to a numerical characteristics solution by either of
the following:

(I) aasuming the u + a line C-D (see sketch) to have the same path as the
characteristic through point D in the similarity solution, or

(ii) assuming the line C-D to be a straight line of, slope equal to the average
of those at D and C.

The first assumption yields

+ - + .1 - (54-11)
a0  a0  -12 aso-

from which is obtained

2Y

= -i + t 2 t (54-12)
po + 2 a0

a I 2 0 2)
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The second assumption yields

at, - at o U (54 -13)

0  a0  (y2 +at- ) Q+ (0+5) ¶(3 -7)2
a
0

where

-- 2 27 (54-14)

ao ao (-/- 1) E

The approximate results obtained by using the first assumption, Equation (54-12),
have been compared to the exact analytical solution of Somes for a y 5/3 gas
which may be expressed as

-t [L8 1 (6 7"81 ] (54-15)

a0  51 7 220

where

= (1 and t *
3ao 3ao 3 / d t

The approximation is excellent, as seen from the values of p•/P 0  in the table (a
plot would show almost no difference).

Olt 1 1 5 1.75 2.0 4,1575 10
ao (= tr*)___ ____ __

Exact
From Reference 17 2.755 4.777 7.694 12.097 243.0 16,040
Equation (54-15)

Approx,
From Reference 37 2.755 4,776 7.687 12.089 239.0 15,879S~Equation (54-12)

% error 0 0,02 0.09 0.23 1.65 2.87

Thus, all the barrel entry conditions (u4 equal to a&, 4•, etc.) may be calculated
from Equation (54-12) for the times beyond t .

1*,
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Section 55

Required Motion of the Pump Tube Piston
When it Enters the Barrel

Heretofore, the possibility has not been considered that the piston, being
deformable, might enter the barrel during the projectile travel.

Deformable Piston

S~Projectile

Pump Tube Propel lantGIas

Piston Front End

This situation can occur, for example, if the initial pressure in the pump tube is
sufficiently low. The question arises: Is this an advantageous method of maintaining
constant base pressure? An answer to this query is provided by determining the velocity
required of the piston front end when it enters the barrel. The motion of the piston
front end, when in the barrel, is to be that required to continue to maintain the
pressure constant behind the projectile. Hence, the piston front end must travel at
the velocity of the gas particles in the barrel as determined from the constant base
pressure gun solution

t / / /X/

$• / 'Particle paths

(------u =azti -- -•ui =ai =;a i

This discussion assumes that the u + a disturbance initiated from the piston front end will
arrive at the projectile before it Is out of the barrel.
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Thus, a plot of velocity of piston front end as a function of time would appear as in
the sketch.

Projectile Velocity C" Piston
•T Front End

Velocity

u-Barrel entrance
Velocity

time piston enters barrel

A B ti** C D

The required velocity time history of the piston front end is indicated by the arrows.
If the piston enters at a time before t* , the front end must travel at the

projectile velocity. Thus, the velocity-time for piston entry at time tA is the
line A'-B'-C"-D". If the piston enters at a time after t•* , its velocity will
initially be the velocity of the gas at the barrel entrance; thereafter, the piston
front end must accelerate until it reaches the velocity of the projectile. Thus, for
example, let the case in the sketch where the piston enters the barrel at time tc be

considered; the velocity-time history of the front end of this piston will then be the
path C'-C".

It is obvious that to attain and control the needed very high piston velocity that
is required as shown above, is prcbably not possible, It is therefore concluded that
the entry of the piston into ,the b•rrel is undesirable as a means to maintain the base
pressure constant behind the projectile. This conclusion seems to be in agreement
with comments of Charters anl R.N. Cox (page 403 of Reference 94).

* Section 56

Methods of Achieving the Desired Chamber
* Pressure Variation

It has been demonstrated that the pressure in the pump tube must change with time
as indicated in Figure 29 for an ideal gas to attain a constant base pressure behind
the projectile, Methods of obtaining the desired pressure-time variation in the
chamber, or "matching", are discussed in References 35, 36, 37, and 40. The final
words are yet to be written. In all cases the pressure of the gas in the pump tube
is increased by means of the piston motion in a two-stage gun,
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The following schemes have been proposed to match the pressure rise in the pump
tube with that required for a constant base pressure behind the projectile.

(i) Matching by the proper selection of piston mass, pump tube geometry, and pump
tube initial loading conditions. (See Smitbha, Winkler 3

6 and Wilenius").

Proper• proper
piston initial Pl, T1 '

By judicious selection of the above parameters a reasonable match may be obtained,

Calculated after
l Matching

Pp

p0

On, difficulty of this method is an undesired rapid rise of pressure in the pump tube
after the matching has ended,

(ii) Matching by the provision of available pump tube volume (grooves) which are
excluded during piston travel.

This method of matching has the disadvantage that the number and size of grooves
required make it impractical 34 .
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(±J..LJ MIhIL.eI U. 1~VI• UA 11U• iu1V I iuLUh u: Lim pump LuWv tu tiouw part
of the pump tube gas to leak.

This modification of the pump tube appears to offer the possibility of perfect

matching and seems mechanically feasible. (See References 35 and 36).

(iv) Matching by the use of a conical taper to control the end of the piston motion.

This method does not permit perfect matching, as seen from the analysis of Smith3 a.
However, it has experimentally yielded the highest projectile velocities (Charters 94 

-

sketch of the gun used is shown in Section 70). It offers the advantage of permitting
the piston to be stopped without unacceptable damage to the pump tube. (Bee also
Curtis and Charters 3e,31 and Cable' 0 8). The angle of conical taper which seems to
have yielded the best experimental results is around 4-degree half-angle 94 108),

(v) Matching-by the use of a taper whose cross-sectional area is varied as a
function of its length to effect the match.

MATCHED TAPER

PUMP TUBE

This method seems to offer promise but more study is required to determine its
feasibility,
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(VI) MaCcflllg Dy tne use o0 orifices in the p.st•on.

D IAPH RAGMS

This method offers the possibility of matching for many different firing conditions
without having to remodify the pump tube.

(vii) Matching by use of two pistons in the pump tube. Piacesi 98 , describes this
possibility of using two pistons separated by gas in the pump tube to maintain the
pressure behind the projectile. This scheme, used in conjunction with one of the
methods discussed above, may be advantageous.

In all of the methods described above, pistons are used to compress the pump tube
propellant gas. When the piston accelerates to compress the gas in the pump tube,
shocks will actually form, their strength being proportional to the square of the
piston speed. These shocks may well cause "spikes" of pressure to be superimposed on
the otherwise constant pressure at the base of the projectile.

PPSPp

Thus, in the design of a constant base pressure gun, it is recommended that, after
using one of the methods to select the gun system parameters, the actual performance
be obtained from a computation which accounts for shocks such as described in
Section 46.

Large pump tube diameters would avoid the occurrence of strong shocks by
permitting the piston velocity to be decreased. However, this may not be a practical
remedy.

At the present time the best method of matching has not been decided. However, the
matching requirements of all of the above methods seem to demand relatively large
pump tube volumes: also, the constant base pressure gun takes advantage of having
long caliber barrels (e.g., 400 calibers), whereas, conventional gas gun barrels are
relatively short (around 200 calibers) before frictional effects dominate.

L _
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The above methods allow one to design guns on paper to fire projectiles at velocities

around 50,000 ft/sec*. Whether such velocities will be realizeable in practice will
require experimental trial. The prespure capability uf the pump tube becomes the
limiting factor in the design. An expendable, deformable, part of the pump tube which
will withstand perhaps a million lb/in 2 offers the possibility of achieving even
higher velocities. Confidently, it is predicted that such velocities will be attained
by use of the constant base pressure concept.

Section 57

Remarks on the Effects of Non-Idealities on
the Performance of the Constant Base Pressure Gun

The effects of non-idealities on preburned propellant gas behavior are discussed

in Part XI. Here these effects on the constant base pressure gun performance will
be examined.

The discussion has largely been limited to the use of ideal gas propellants in the

constant base pressure gun. However, the actual real gas isentropic behavior must be
used to determine the performance of the gun. The constant base pressure requirements
for a gas with any equation of state satisfy Equation (49-5), viz.

J .d = Oc2 t
2/2- O(x (57-1)

0

In particular (see Equation (48-19))

Pd . . (57-2)

P 2

0

The real gas p-p isentropic relation may be inserted into Equation (57-1) to obtain
the required pressure-time relation for the real gas. The energy relation between
chamber and barrel is

dp7

and again real gas data may be used. Smith" has inserted the equation of state of
the Abel co-volume gas into these equations to obtain the simJlarity solution for the

Abel gas.

Of course, in any design real gas equation of state effects must be accounted for: see Section 57,
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it is shown in Section 63 that real gases at high density, where the repulsive
intermolecular field predominates, yield a larger fdp/p (which is equivalent to
enthalpy change) than ideal gases. Thus, it iA seen from Equation (57-2) and (57-3)
that the performance of a dense propellant gas (such as the covolume gas) will be
better than the ideal in the constant base pressure gun.

As pointed out below, another way to understand this gain in velocity in a quasi-
steady expansion of a dense real gas relative to an ideal gas is to note that the
enthalpy is greater for the real gas. Thus, for an Abel gas the entbalpy is

fdp/p = h = CpT + pb

The additional term ph , which the ideal gas does not have, is an additional energy
term yielding better gun performance in a constant base pressure gun for the Abel gas.
Smith's computed results 3 5 confirm this.

It happens, therefore, that if high densities occur in the propellant gas, the
effects of non-idealities must be accounted for in calculating the requirements for a
constant base pressure gun; the actual real gas data must be used.

As a result of the real gas effects of a dense propellant, preliminary calculated
results indicate that, for a given projectile velocity and maximum pump tube pressure,
the two-stage constant base pressure gun using a real gas has a significantly smaller
pump tube than calculated for an ideal gas.

IDEAL H 2

up =Some

DENSE REAL H2

500,000 psi -5000 OR Ideal

S30• • OR ,/ Real Pp Real & Ideal

'e 00300 0  
________

'00,\0 00,, 40,000 psi

t • - it '
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1L i utiiu uuted that the temperature rise ror the real propellant gas is less than
for the ideal propellant gas.

To account for the non-ideal effects, it is convenient to approximate, as pointed
out in Section 66, the behavior of the real gas by the following semi-empirical
entropic equation:

) - f) K (574)

where /3, f , and K are functions only of entropy. (This equation was used by
Seigel*" to describe dense gas behavior). It is seen that this equation is equivalent
to tha Abel equation for a given entropy if /3/(,3-2) is replaced by y , and if f
is replaced by b ; these constants, however, will change for each different entropy.
The expression for enthalpy becomes for an isentrope

h -hoe = d = Pof [P '] +[ (f- [ (5[-5)

P.o

The similarity solution requirements for maintaining constant pressure become, from
(57-5) and (57-1),

f [p. 1 'apo (1. pý Q2t2

po 2 2 ax (57-6)

from which the variation of pressure Pi at the barrel inlet (x 0) as a function
of time is

D~f Pi- + •p1 1-f)(PO - •xt (57-7)

The relation between the barrel inlet conditions and the chamber pressure is, from
(57-5) and (57-3),

2miI;;1 fo f;( -'1i 7' II2Smithas has evaluated these equations for ai Abel gas to apply to a hydrogen propellant'.
He points out that the effect of the moleoular volume is to increase the sound speed

above its ideal gas value and thus in most cases the flow never reaches sonic at the

Smith's results for hydrogen are in doubt, since he uses a constant oovolume, whereas the
available hydrogen isentropio data cannot be fitted with a constant covolume In the high
density region. .
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barrel inlet. Hence, the similarity solution equation (57-6) is sufficient; the
characteristics solution beyond LItm llimiLiig characteristic is unnecessary. Of

course, if the flow does become sonic, a characteristic solution must be computed.

Since the density reached by the propellant gas in a constant base pressure gun Js
relatively very high, it is particularly important to use the true gas data.

Unfortunately, reliable isentropic data for hydrogen at high densities are not

presently available. Wooley's hydrogen data99 have been extended to high density

and the results fitted, in reference 100 to Seigel's semi-Pmpirical equation (57-4).
A plot of the fitted constants is given in Figure 45. Until more reliable data are
forthcoming, it is recommended that Equation (57-4), with the data of Figure 45, be

used to approximate the behavior of dense hydrogen.
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XI. THE EFFECTS OF PROPELLANT GAS NON-IDEALITY
T;.;. U . uFr'', rn'r bUiiRal PKOPIELLANT GUNS

Section 58

The Criteria for Propellant Gas Performance
In an x 0 = co , PP Gun

The assumption that a propellant gas behaves as an ideal gas implies that the
following conditions are true during the expansion of the gas:

(a) The number of degrees of freedom which are energized remains constant.

(b) The number of gas particles does not change.

(c) The forces between the gas particles are negligible.

However, if the temperature of the propellant gas is sufficiently high, conditions
(a) and (b) are not satisfied; if the density is sufficiently high, condition (c) is
not satisfied. In these instances the behavior of the propellant gas (and hence of
the projectile) may deviate significantly from that for the ideal gas case. (It has
already been noted in Section 57 that the non-ideality of hydrogen in a constant
base pressure gun must be taken into account).

In comparing the performance of the actual or real propellant gas to that of an
ideal gas, the view is taken here that before expansion the two propellant gases are
at the same initial pressure (po) and the same initial temperature (Td)t. During
the expansion the pressure-velocity (p-u) curves of each of the propellant gases
behind the projectile may be compared; the propellant gas with the higher curve will
yield a higher projectile velocity.

T •better propellant gas

p

not as good

U p

The determination of which gas properties control the velocity increase for a given
pressure decrease may be obtained from an examination of some of the previously
obtained fundamental gas dynamic equations which characterize the propellant gas
expansion.

* A similar analysis has been applied to shocktubes by Seigel 4 1 .

SOf course, there are other possible initial conditions to be used for a comparison (eg., the
comparison may be made for the same initial pressure and initial Internal energy, or for the
same initial pressure and initial sound speed, and so on).
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A chambered, x0  ao gun will be considered; the gas flow will be assumed
i!Dl 1uplu. Fut Lau unaziuilL diameter onamoer section ana Tor the constant diameter

barrel tube section the one-dimensional unsteady flow theory yields the results that
(see Section 7).

du f dp/ap =0 0(58-1)

This equation applies to both real and ideal gases.

The conditions within the transition section are approximated by the Quasi-steady
flow energy equation and the isentropic condition to yield in the differential form

(see Section 15)

udu + dp/p = 0 (58-2)

Here, again, the equation applies to both real and ideal gases.

Equations (58-1) and (58-2) are the fundamental equations of the propellant gas
flow in a chambered x, = o gun. They are derived on the premise that the flow in

the constant diameter sections is one dimensional and that the flow throughout the
gun is isentropic; no assumption as to the equation of state of the fluid has been

made.

As discussed previously, it is evident from equations (58-1) and (58-2) that the
velocity gain for a given pressure drop in a constant diameter xo = 0 , PP gun is
inversely proportional to "ad' (the acoustic impedance). Hence, for such a gun the
requirement for a good propellant is one in which ap is low as a function of p for
the isentrope.

The situation is different in a chambered gun; flow occurs both in the constant
diameter chamber and barrel sections, and in the varying diameter transition section;
in the latter section the velozity gain by Equation (58-2) for a given pressure drop
is inversely proportional, not to ap , but to p (the gas density).

To review the situation in a x0  co, PP chambered gun, let us consider the sketch.

X0 = OD' •rm

u~~ +0=" Cl

DISTURBANCE
2--d

du = -ddp- du -PO-'•' Op
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driver gas increases the projectile velocity relative to that in a constant diameter

x0 =m gun, since

Uli + LT > a,

(See Equation (16.4)).

In the chamber the velocity increase for a given pressure drop is inversely
proportional to ap ; in the transition section the velocity increase for a given

pressure drop is inversely proportional to p . In the barrel it is seen that for
u + a disturbances traveling from the barrel entrance "i" to the projectile "p", the
velocity gain is inversely proportional to ap .

Thus, the requirements for a good propellant in an x 0 = co , PP chambered gun of
fixed geometry become apparent; to minimize the pressure drop for a given velocity
gain, the following may be stated:

(i) In the x. = c constant diameter chamber section a low ap as a function
of p is desired.

(ii) In the transition section a low p as a function of p is desired.

(iii) In the constant diameter barrel section what is desired is probably a low
ap as a function of p . (This requirement cannot be stated with certainty
since a low ap only insures minimum pressure drop along a "u + a"
disturbance. As the flow conditions at the barrel entry become more steady,

then the entire flow in the barrel is described by the equation

U +O = Ui + Oi = Up +CP

and then a low ap as a function of p is definitely desired)

From the above, requirements for minimizing the pressure drop for a given velocity

gain in an x, = cc , PP chambered gun are seen to be different, depending on which
part of the gun is being considered, However, in most instances the qualitative
performance of an x 0 = c , PP gun with large chambrage is characterized by the flow
in the transition section without regard to the flow in the uniform sections.

Thus, the characteristic of low p becomes the criterion for the best flow in a

gun with large chambrage.

Accordingly, the criteria for a qualitative comparison of an x, = cc , PP gun

propellant gas performance are the following:

(i) The lowest ap as a function of p for the isentrope for best constant
diameter gun performance.

It is to be noted that this result is not necessarily true for guns which are not preburned
propellant guns. For example, it develops that for a constant base pressure gun a low *p"
as a function of p iq desired in the barrel to minimize the presaure drop (see Section 48).
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(ii) The lowest o as a function of n for thA iaantr p. f- k.... 4.ý.f.-itc,

chambered gun performance.

In most instances an examination uf these thermodynamic quantities ap and p for
the isentrope in accordance with criteria (i) and (ii) is sufficient to determine the
relative merits of propellant gases (and thus to determine the real gas effects on their
performance).* These criteria are used below to compare the qualitative behavior of
real gases with that of ideal gases at the same initial temperature T, and pressure
Po . For this purpose, it is convenient to record the equations for the ideal gas
relating p and ap to the pressure p for an isentrope. (See Appendix J).

v+ I

ap =(58-3)
KV-RTOK DPo

1

S Do(58-4)

RT0

Section 59

The Method of Calculating the PP Gun Performance
With a Non-Ideal Propellant Gas

The characteristics equations previously derived in terms of the Riema-n
Function '¶," for the constant diameter sections are

t--• (U 0) + (u + a) 7 (u 0) -= 0 (59-1)

The conditions at the exit and entrance to the transition section are related by

the quasi-steady equations

Uc - = dp/Pi, hi - ho (59-2)
2 2 c

(puA) = (puA)i (59-3)

Newton's equation for the projectile is

M du p (59-4)

In some cases the qualitative detnrmination may require some calculation. Por example, if ap
of one gas is lower in one region of p than the ap of the other gas, and is higher in another
region of p. an estimate of the relative areas jdp/ap must be made to compare the gases.
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The evaluation of

p = p(o)

a = a(o)
(59-5)

p =p(o)

h h(o)

for the isentrope of the gas may be done from tabular values of gas data. If possible,

these tabular values may be fitted to empirical equations, as outlined in Section 66,

to facilitate the calculations.

The equations above, with the given gun geometry and the initial conditions of the

propellant gas may be solved in a step-by-step fashion to yield the complete behavior

of gas and projectile. In the general case of a finite length chamber the calculation
becomes too lengthy for hand computation; an electronic computer is required.

If X0 = 0 , and Do/D 1 , quasi-steady equations (59-2) and (59-3) are

unnecessary; the pressure-velocity relation behind the projectile may be obtained

from the simple wave equation

U +a = O 'D (59-6)

or

u = -f P0 dp/ap , (59-7)

Hence, an integration of thermodynamic gas properties alone is enough to obtain a

p-u relation for the real gas expanding in a constant diameter, x 0 = 0 , gun.

However, in the case of an x 0 = o, chambered PP gun the p-u relation behind a
projectile cn only be obtained by use of all the equations above. Thus, the pressure
at the beginning of the barrel, Pi may be obtained as a function of the velocity ui
from the simple wave equation

ue + oe 0 (59-8)

and the quasi-steady equations (59-2) and (59-3) with the state equations (59-5).
But conditions at barrel entry, i , may be related to those at the projectile, p

only by use of the characteristic equations and the knowledge of the projectile motion

(i.e., Newton's equation), Hence, a p-u curve for a chambered gun requires the
complete gun calculation, whereas for the constant diameter gun only a knowledge of
the gas data is required.



130

Pi

U .

To avoid the required calculation, the approximation that the gas is at sonic

velocity at the beginning of the barrel is sometimes made for high velocity guns.
In that case

Ui a1  (59-9)

and

u1  + o r = u v + p a (59-10)

The pressure behind the projectile may then be evaluated as a, function of the velocity.

S~Sonic

S I Approximation

Actual

pp.

(In the case of the shocktube, the contact surface remains at a constant velocity;
consequently, the p-u relation may be obtained for a chambered or unchambered
shocktubo from the thermodynamic properties of the gas alone.)

Section 60

The Application of the Criteria to a Propellant Gas
at High Temperature

At room temperature the molecules of a gas are in translational and perhaps
rotational motion. As the temperature is elevated, energy is imparted not only to
the translational motion and rotational motion but to vibrate the molecules, to excite
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these additional energy "sinks" as the temperature is elevated, the specific heats
increase and the ratio of specific heats. y , decreases. However, after elevated
temperatures have been reached, further energy transferred to the gas again is
imparted only to translational motion, and the ratio of specific heats, 7 , will
increase. The decrease and increase of 7 may occur again if at still higher
temperatures further energy sinks (e.g., ionization) become available. Eventually,
when all the possible dissociation and ionization have occurred, the value of / will
be that of a monatomic gas, 5/3. The y/ variation for hydrogen gas is sketched
for a constant pressure and for a constant entropy.

S1. 5 - H 2
1.41.3

1.2 pressure = 1000 atm1.2

2,000 4,000 6,000 8,000 10,000 T OK

1.4 -,, H2

C constant entropy

T = 4500 OK Point
1 .2 - -r

0 500 1000 p atm

In general, for heated propellant gases the value of 'y is less than it would be at
room temperature.

An approximate method of accounting for this change in y during the expansion of
the propellant gas is to assume the isentropic relation

p = OK(s) (60-1)

where K is a constant for a given isentrope and the exponent "n" is fitted by the
equation to the actual isentropic p-p relation. Thus, n is not equal to the
ratio of specific heats 7 , but is an "effective 7" for the isentropic expansion.
Bjork 4 2 has pointed out that a constant n value for hydrogen isentropes fits the
calculated data very well (see Section 66)*.

However, the hydrogen data BJork uses does not take Into account the non-idealitles due to
high density.
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Since at the high temperatures the y is generally lower than that of an ideal gas
at lower temperature, the exponent "n" is also generally loss than the y of the
ideal gas.

Because of the ionization and dissociation that occurs at elevated temperatures, the
number of particlcs (atoms, molecules, ions, and electrons) is increased. As the
propellant gas expands the number of particles decreases. Thus, the thermal equation
of state takes the form

p : p(l + !)RT (60-2)

where a is the fraction of the additional particles and is obtained from a fit of
this equation to the real gas over the range of the gas expansion. The variation of
a for hydrogeý gas is shown in the sketch.

a

.Pressure = 1000 Constant Entropy1.0- t .

0.5 -0.5 0I6, 000 oK

00 5,000 OK 10,000 OK 0500

T p atrnx---

Equations (60-1) and (60-2) thus approximate the behavior of a real gas expanding
from a high temperature.
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From these equations one finds for the isentrope

n+,

ap = \ (60-3)
V(i + -)RT. \pop

and

= ( P+ )RTo (60-4)

where the subscript "0" refers to the initial state.

If ap and p are compared to the corresponding expressions for an ideal gas at
the same initial pressure and temperature, the following ratios are obtained:

n+_i. _ _+1

(aP)real high T . : pn2n 2/ (60-5)(10) ideal 7(1 + PO) (0

1 - 1

').r eal. h i gh T .n1 V06 
6

((P)ideal + (,0v0)

Upon examination of these equations, it becomes obvious, since n is less than y
and Z is positive, that these ratios are both less than one; that is, ap and p
for the real gas are less than the corresponding quantities for the ideal gas. (This
is true even if a is equal to zero, which is the case for no ionization and
dissociation). Verification of this is seen in Figure 31, where these ratios are
plotted as a function of p for the expansion of an air isentrope with initial
conditions of pressure equal to 100 atmospheres and temperature equal to 86840 K. A
sketch of Figure 31 'is shown here. The data for real air were obtained from
References 43 and 44.

Thus, according to the criteria (i) and (ii), a real gas at high temperature will

be a better propellant than an ideal gas at the same temperature and pressure in both
the chambered and constant diameter guns .

It is to be remarked, however, that a simplification in calculation is possible in
the case of a gun in which the propellant is raised in temperature by a given amount

of energy (or, for example, by being compressed by a moving piston of given kinetic

* It may be that during expansion of the propellant gas, some of the modes are not in
equilibrium and lag the translational mode: then, as a first approximation, the "n" and "5"
would be adjusted to reflect this condition. Such lags would tend to increase 5 and
decrease n , producing better propellant performance.
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energy as in a two-stage gun) if only moderate amounts of dissociation occur. In this
case, experience has shown that the calculated results with the assumption that the
propellant gas is ideal are very nearly the same as obtained by taking into account
the cffects of high temperature on the gRS hAhavior. This is true because, for a
given energy input, the ideal gas would rise to a higher temperature than the
vibrating, dissociating, ionizing real gas; hence, the higher temperature ideal gas
Would tend to behave as the lower temperature, lower y , more particle, real gas.
An example comparing the performance of a dissociating propellant gas to that of the
propellant gas if undissociated is given in Appendix II of Reference 28.

1.0-
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(ap) real 0.8 - a dal

(a p 
atideal 
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Section 61

Introductory Remarks Concerning
a Dense Propellant Gas

If the density of the propellant gas in a gun is sufficiently high, the gas
molecules will be close enough to each other so that the intermolecular forces

between them will influence their behavior, Under these circumstances the ideal
equation of state does not describe the gas, and there is a possibility that the
behavior of the propellant gas upon expansion will be substantially different from
that of an ideal gWs. If the gas is highly compressed, the intermolecular forces
which exist are predominantly repulsive in nature and tend to push the molecules
further apart: if the gas is allowed to expand to a less dense state, the forces
between the Molecules become predominately attractive in nature and tend to pull the
molecules closer together, If the gas is still further expanded, the intermolecular
forces become negligibly small, and the gas behavior may be described by the equations
for an ideal gas,
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it buomr reusonanie to suppose that repulsive forces between molecules would tend
to accelerate the gas flow compared to a gas with no intermolecular forces (that is,
compared to an ideal gas), and that attractive forces would tend to reLard the gas
flow. Thus, by this supposition, a highly compressed dense propellant gas upon
expanding would flow more rapidly than an ideal gas until it reached the region where
its density was low enough so that the attractive field predominated; then, the gas
would expand at a slower rate than an ideal gas until its density was sufficiently
low so that the intermolecular forces would be negligible; thereafter, it would
expand as an ideal gas.

This simple picture of the effects of intermolecular forces on the expansion of the
driver gas does not, however, take into account two important factors, One is the
difference in nature between repulsive forces and attractive forces; the repulsive
forces between molecules are "short range" forces and act only over short distances
relative to the longer range attractive forces which exert influence over relatively
much longer distances. Thus, the influence of repulsive forces on the expansion may
well be different in magnitude than that of the attractive forces. The second
factor not taken into account by the simple picture above is the relation between

intermolecular forces and the geometry of the gun. In a non-uniform cross-section
gun the driver gas expands from a chamber to a smaller tube; during the expansion the
flow is basically steady in the transition section between chamber and tube and
unsteady elsewhere, It is difficult to ascertain the effects of the Intermolecular
forces on the combined steady and unsteady flow which results from the non-uniformity
of the shocktube.

It is the purpose of the following sections to discuss the effects of this type of
non-ideality due to high density on the behavior of the expanding propellant gas,
The expansion in both the constant diameter gun and the chambered gun will be

examined.

Section 62

The Moderately Dense Propellant Gas

in an xo = 0, PP Gun

(a) The van der WaaIs Gas -A model for a Moderately Dense Gas

The van der Waals equation of state will be used to approximate a real gas at
moderate density. This equation is

(p + •o2) - b) = RT (62-1)

The terms Vo2 and b are corrections to the ideal equations of state which account
for the attractive and repulsive forces between molecules, respectively, If it is
assumed that 0 v at zero pressure is a constant (C. = constant), then the isentrope
may be derived from Equation (62-1) as

(P + to2) 1 b '= K

(P mi
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where K is a function of entropy only, and 'y is defined as (Cv O + R)/Cv V

Since the values of o2/p &tud bp are small relative to one at moderate
densities, the expressions for p and V as functions of p may be simplified

to yield

r Y 1 r i1
ap {RT 0 + + (62-2)

L(~o 2

pRT0 IP0  yRTp0) K(RT e) 2 if PS= (p) 1-R~ 1÷ (R 2 j(Y-1) ± (62-3)

In the derivation of these equations, terms containing the square of the terms
cp /p and bp and higher (or their product) were dropped as being small relative to
these terms themselves.

The effects of the intermolecular forces are evident from the equations for ap
and p . It is seen that in the expression for ap there are no repulsive terms
present (i.e.. there are no terms containing b), but attractive force terms
(involving '-) are present*. These attractive terms increase ap from the ideal
value, and therefore act to retard the expansion rate relative to an ideal gas
(according to criterion (i)) as expected. Since the repulsive field exerts no
influence, it is seen to be ineffective in improving gun performance in a constant
diameter gun.

From an examination of the expression for p . it is seen that the density as a

function of p for a given initial pressure and temperature is altered from that
of the ideal gas by both the attractive force term (containing ') and repulsive
force term (containing b). The attractive force term increases the density p , and
thus the expansion is retarded relative to an ideal gas according to criterion (I)):
the repulsive force term decreases the density p , and thus the expansion is

accelerated relative to an ideal gas. It is further seen from the equation for
density that when the initial density (approximately po/RT0 ) is increased, the
density p is decreased. Thus, the effect of the repulsive forces becomes greater
than that of the attractive forces with increasing initial density.

It is apparent that the dominating effect for the chambered gun (repulsive or
attractive) would depend on the relative magnitudes of the constants "•' and "b" and
the initial density p 0 . For a gas such as helium (and to a lesser extent hydrogen)
the attractive field is weak relative to the repulsive field, and the b term would

* If second-order terms are taken into account, repulsive terms (with b) do appear in the
expression for ap for the van der Waals gas; thus. in the case of extreme densities, there
would be an effect of the repulsive field on the expansion in a uniform tube (as shown by
Dawson and Slawsky'4),
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dominate. Other gases, such as nitrogen or carbon disulfide, have a relatively
strong attractive field. The van der Waals constants wbich are indicative of the
relative strength of the repulsive and attractive fields are given in the tahle fnr A.
few gases*.

Propellant Gas a atm (liters/mole) 2  b (liters/mole)

Helium 0,034 0.024

Hydrogen 0.24 0.010 to 0.027

Nitrogen 1.39 0.039

Carbon disulfide 11.62 0.077

It may be concluded from the above discussion that at moderate density the effects
of molecular forces on the expansion in a uniform cross-sectional area tube is to
retard the expansion. In the transition section the effects of the attractive and
repulsive forces tend to cancel each other; the gas flow may be retarded or
accelerated by these forces; which effect dominates depends on the relative
magnitudes of the van der Waals constants and the density; the higher the density,
the mole the repulsive field dominates,

(b) The Moderately Dense Real Propellant Gas in an
x =co, PP Gun

The above conclusions may be verified by examining pressure-velocity (p-u) curves
for real (actual) gases in guns. These curves are calculated using Equations (59-I)
through (59-4) with the gas tabular isentropic data fitted to a semi-empirical equation,
as explained in Section 66. The p-u curve for nitrogen at moderate density
(p0 = 340 atm, T, - 250C) expanding in a gun is shown in Figure 32. It is noted that,
for D0 /D1 = 1 , the real nitrogen curve falls below that of the ideal nitrogen,
This is in accord with our Qualitative result, For a diameter ratio of infinity
(infinite ohambrage) the curves are very nearly coincident, indicating the cancelling
effects of the repulsive and attractive fields - again in accord with our qualitative
conclusions. (The tendoncy for lower p at a given u in the lower region of
pressure is due to the fact that the gas state approaches the strongly attractive
two-phase region).

It would seem from the above discussion that at a higher density the effect of the
repulsive field may more than cancel that of the attractive field in an expansion in
a chambered gun. This is seen in Figure 33 to be the case with nitrogen at an initial
pressure of 1,000 atmospheres and an initial temperature of 2500. Here is seen the
remarkable results that the p-u curve for the real nitrogen falls below that of the
ideal gas for the constant diameter shocktube and ip above that of the ideal gas for
the infinite diameter ratio case.

The relative strength of the repulsive and attractive fields may also be seen from an examina-
tion of the force constants a and E/k which occur in the Leonard-Jones equation of state.
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That this result agrees with criteria (i) and (ii) is seen from Figure 34, where ep
and p are plotted as functions of p for this case. It is seen from this figure
that the real nitrogen should expand more rapidly than the ideal in the transition
section (since (p)real/(P)ideal < 1) and less rapidly in the constant area section
(where (Pa)real/(Pa) ideal > 1).

The effects of diameter ratios other than one and infinity have also been
investigated. From calculated results it is concluded that the D0 /D, = 5 curve is
practically the same as the Do/D1 = o curve, and that a diameter ratio curve somewhat
less than the Do/D= 2 curve (say, D0/D1 = 1.5) would lie midway between the one and
infinity curves.

1/D'C REAL N2,'p P6 = 1000 ATM

To = 250 C

D/DD 1 1 .5

(These conclusions are true for ideal gases, and, as will be seen below, are
approximately true for real gases except at extremely high density).

Section 63

The Hi~hly Dense Propellant Gas in an
X 0 = co , PP Gun

(a) The Abel-Noble Gas - A Model for a Highly Dense Gas

In the very dense gas the molecules are so close together that the repulsive field
is extremely large relative to the attractive field. To describe approximately the
behavior of such a dense gas, the attractive term (Vo2) in the van der Waals equation
is neglected and the equation

.I
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P bý = RT (63-1)
/

is often used. The terms "Abel-Noble", "Abel", or "covolume" are used for this
equation or for the gas that the equation describes.

From Equation (63-1) and the thermodynamic relation

C~ ~ 1C T f ý 2 p\'
C V = C

voT d (63-2)

where Cv m,T is CV are zero pressure and temperature T , it is found that

cc = Cv wT (63-3)

.for ihe Abel-Noble gas. Then from the Gibbs Law equation expressed as

T += C1 -dT dp (63-4)

T

and the assumption that Cv w.T is constant, the isentrope for the Abel-Noble gas
is obtained as

p( b) = K (63-5)

where K is a function only of entropy. This isentropic equation (63-5) is especially
useful in interior ballistics calculations and is very convenient to use. (In
Section 66 a similar equation applicable to actual propellants is discussed),

The expressions for ap and p as a function of p may be obtained from
Equations (63-1) and (63-5) as

ap I (63-6)LRT ýo)

Lp /PcTA + b(63-7)

By comparing Equation (63-6) for ap with the corresponding expression for an ideal
gas (Equation (58-3)), it is seen that the two expressions are identical. The pressure-
velocity history during an expaonsion of an ideal gas and that of an Abel-Noble gas
from the same initial temperature and pressure in a constant dic.ieter tube are there-
fore identical; from this point of view there is no effect of the repulsive field on
the expansion in a constant diameter gun.
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This result is as expected from the previous result with the van der Waals equation at
moderate density. (However, in the case of extremely high density there probably
would be some effect of the repulsive field, as evidenced by the theoretical work of
Reference 45). Thus, repulsive forces are again seen to be inefficient in improving
driver gas performance in a constant diameter section.

In the case of an ideal propellant gas, the initial sound speed a, was found to
be a criterion for the merit of the gas. The sound speed of an Abel gas is much
above that of an ideal gas at the same temperature and pressure,

-1 1

'I Vo b (pT

vb ba ?T 0 II + 1+ -I I

0 V1`T0 v.-b] = VYRTO RTo

Yet, as shown above, the ideal propellant gas and the Abel propellant gas at the same
initial temperature and pressure would produce the same constant diameter gun
performance. Hence, the acoustic velocity is not an indicator of the merit of a real
propellant gas as in the case of an ideal propellant gas

The Abel-Noble expression for p is different from that of the ideal gas Equation
(58-4) by the presence of the covolume term b which decreases it as a function of p
for given initial p0  and TO . Therefore, in an expansion (from a given pressure
and temperature) in a transition section, a highly dense real gas will expand more
rapidly than an ideal gast. Thus, the repulsive field is again seen to be efficient
in improving gun performance in the transition section.

* However, it should be noted that initial temperature still retains a dominant role for the
Abel gas in an x0 co , pp chambered or unchambered gun. This is seen from an examination
of Equations (63-7) and (63-6); from these equations it is evident that a higher initial TO
yields a higher projectile velocity for a given b and p.

t Another way to understand the gain in velocity in a covolume gas in a steady expansion is to
note that the enthalpy has an additional term, pb , which the ideal gas does not; thus
h , Coc,T0 T + pb + RT for the covolume gas,

N..



141

Then ranrke are borne cut in Figurc 35 where the ; u cur7.ý arG Ghow. foi, a 14

7 = 7/5 gas with and without cavolume; the diameter ratio one case (no chbmbrage
case) and the diameter ratio infinity (infinite chambrage case) are illustrated. A
cuvolume parameter b/(vo - b) equal to 100 is used for this curve*.

*1 V -b =0,100 4

100 1b).4po V .b)

b = 0 Do/D =--
0-_ Do/DI=I
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It is seen that, for the constant diameter gun, the p-u curve of the ideal gas
(iLe., the gas with b/(v0 - b) = 0) is coincident with that of the covolume gas
(b/(vo - b) = 100), However, for the infinite chambrage case the effect of covolume
Is seen to increase the pressure for a given velocity by a huge amount.

(It is to be remarked that the velocity in these and other curves for the Abel-Noble

gas is made dimensibnlese by dividing by a parameter which has a factor /w,(v, - b)
This factor would equally well be expressed as V by use of the thermal equation,

Equation (63-1). Thus, a given dimensionless velocity indicates a given velocity for
a given initial temperature. The reason the factor VTp 0 (vo - b) is used is to

emphasize the fact that the p-u curve is derived only from the isentropic equation,
Equation (63-6); thus, when real gas data are fitted to an isentropic equation similar

to the Abel-Noble equation, the p-u curve for it may be calculated without regard
to the thermal equation of state and the velocity made dimensionless in a like manner).

The effects of a value of the covolume parameter equal to 8.00 for the y 7/5
gas is seen in Figure 36 where p-u plots are shown, Here again the repulsive forces
(which are accounted for by the covolume) are seen not to affect the uniform diameter

expansion, but do increase the pressure for a given velocity (or increase the velocity

for a given pressure) in the chambrage cases.

It has been observed from other calculated results that the diameter ratio curve
which is midway between the D/D 1 = 1 and D1/D2 = curves is 2 for the
b/(vo - b) = 8.09 (very dense) gas and 3 for the b/(v0 - b) = 100 (extremely dense)

gas case.

* This dimensionless parameter Is the ratio of volume occupied by gas molecules to the volume
not occupied by gas molecules - the larger this ratio is, the larger is the covolume. This

parameter occurs conveniently In the equations of an Abel gas. A value of this parameter
equal to 100 is as extremely large value: a value equal to about 10 is what nitrogen or
hydrogen gas at a pressure of around 10,000 atmospheres and room temperature would possess as

seen from Bridgman' a datas.
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The escape velocity (the velocity that the propellant gas attains when it expands
into a vacuum) is seen from Figure 37 to be increased by the repulsive for es in the
cases with chamhragA. Tn this figure the dimensionless escape velocity is plotted as
a function of the parameter b/v 0  (the covolume divided by the total volume). For the
no-chambrage case (D0/Di = 1) the escape velocity is unaffected by the repulsive
forces - it is the same as for an ideal gas; however, for chambered guns the enormous
influence of these forces is evident in the figure.

Do/I =) N

0 0.5 1.0 V0

In fact, for large b/v 0  the escape velocity may be shown to be equal to the product
of the area ratio and the escape velocity of a covolume gas in a gun with no chambrage;
viz.,

Ue D y(v- - b) 2 A (63-8)

and becomes infinite for infinite chambrage,

(b) The Hi~ghly Dense Real Gas

The same effects of the intermolecular forces as appeared in the Abel-Noble gas are
evident in real (actual) gases at very high densities, Figures 38 and39 show a comparison
between real nitrogen and ideal nitrogen, In Figure 38 the pressure-velocity curves are
compared for an initial condition of nitrogen at a pressure of 3,000 atmospheres and
temperature of 250C. For the no-chambrage case (D0/D1 = 1) the ideal and real curves
are very close togethert. For the infinite chambrage case, the real gas curve as for
the Abel gas model is much above that of the ideal curve and demonstrates the expected
increase due to the repulsive forces.

The escape velocity is evaluated from the equation

u { PO dp/a] + O dp/P i f dp/aP

with the condition that the flow is sonic at the barrel entrance, i.e.,

u - ut = ai

f Since in the lower region of pressure the influence of the two-phase region is felt, the
attractive forces precominate and cause the real gas curve to fall below the ideal gas curve.
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at a higher initial pressure, 6,000 atmospheres, at 25 0 C. Here the repulsive effect is
seen in the no-chambrage case as well as in the infinite chambrage case where it is
most striking.

Do/D = 00 Nitrogen
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Similar evidence of the real gas effects on the expansion in guns is shown in
F~igure 40 where p-u curves for ideal and real hydrogen are compared at initial
conditions of p 0 = 2190 atmospheres, T. = 1500C, The repulsive effect is apparent.

The effect of chamber diameter on the dense real gas has been calculated, It has
been found that the Do/D 1 = 5 case is almost the same as the D0/D 2 = O case, and
that a D0/D 1 equal to slightly less than 2 (about 1%) is halfway between the 1 and
m cases,

Section 64

Summarizing Remarks on Dense Propellant

(anes in an Xe = c, PP Gun

It has been demonstrated that the behavior of a dense propellant gas in an x 0 = 00
PP gun may be considerably different from that of an ideal gas, This difference in
due to the existence of attractive and repulsive forces which act between the gas
molecules. The attractive forces tend to decelerate the expansion rate relative to
an ideal gas and thus adversely affect gun performance; the repulsive forces tend to
accelerate the expansion rate relative to an ideal gas and thus improve gun performance,

At very low gas densities the intermolecular forces which exist are negligible: at
higher densities the forces are predominately attractive. At still higher densities
the repulsive forces predominate. The effectiveness, however, of these forces on gun
performance depends oi? the geometry of the gun. It is found that the attractive
forces are much more effective relative to the repulsive forces during an expansion
in a uniform cross-sectional area gun; whereas, both types of forces, attractive and
repulsive, are effective when expanding in a non-uniform gun. It is to be noted that
acoustic velocity is not a measure of the merit of a real propellant gas as it is for
an ideal propellant gas. Qualitatively low ap (acoustic impedance) as a function
of pressure for the isentrope is desirable for good propellant performance in a
constant diameter gun; for a chambered gun, low p (density) as a function of
pressure for the isentrope is desired..
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The effects of the propellant gas density on gun performance are summarized in

the table.

Relative Magnitude x°'= oo , PP Gun Performance
Propellant of Attractive and of Real Gas Relative to

Ideal Gas

Gas Repulsive

Density Intermolecular DO/D, -

Forces Uniform Gun Ghambered Gun

Low Both negligible Same Same

Moderate Attractive Much worse Somewhat worse,

predominates or same, or
I somewhat better

Moderately high Both of same Worse Better

order

Very high Repulsive Same or Much better
predominates somewhat

better

It is remarkable that at moderately high density the performance of a real gas may be
worse than that of an ideal gas In a uniform diameter gun, but better in a chambered

gun (as seen in Figure 33). Thus, the gul in this region of density becomes a

discriminator between the attractive and repulsive intermolecular forces. At very
high densities, the performance of a real gas is about the same as that of an ideal

gas in a uniform gun, but is much better in a chambered gun. This result agrees with

that obtained from the Abel-Noble equation of state to approximate the behavior of a
very dense real gas.

To describe accurately real gas behavior a semi-empirical entropic equation (similar

to the Abel-Noble equation) has been fitted to tabular data with success (see Section 66).

From the isentrope the velocity (and thus the performance) of a driver is evaluated from
the f(dp/aO), for the expansion in a uniform gun, and J(dp/p), for the nonuniform
gun.

Section 65

Expansion of a Real Propellant (as in a PP Gun
With Finite Length Chamber

It is reasonable to assume that the effect on gun performance of the gas non-

idealities when the chamber length x0 is not infinite is qualitatively the same as

when x0 is infinite. Each such finite x 0 case requires a calculation involving

all the Equations (59-1) through (59-5).
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An interesting result may be obtained fnr tho . -- iPreburned propellant gun for which xo is finite and Do/D 1  is equal to one. Thisis then the classical Lagrange ballistics Problem with a propellant whose isentropic
equation of state is

P(v- b)r = K (85-1)

and whose thermal equation is

p(v- b) = RT (65-2)

It is demonstrated in Appendix I that for a given propellant gas mass to projectilemass (0/M), a given ratio of specific heats T, and the same initial pressure andtemperatures, the projectile behavior for the Abel gas is precisely the same as
that for the ideil gas in a DO/Di 1 gun.

Thus, In general, for constant diameter guns (De/D, = 1), dense real gases willyield the same performance as ideal gases at the same p, and T0  if the mass of gass0 is the same; however, for a given D,/Di = I gun of fixed finite volume, the densereal gas will yield poorer performance, since the mass of real gas in that case is less
than the mass of the ideal propellant gas,

REAL GAS MP UP idea . .. U Rel

SAME INITIAL paTo Up(deaI) > UTo(ReaI)

IDEAL GAS 
B b

Another way to rationalize in this instance is to think in terms of the sound speed;the sound speed in the real gas is larger than in the ideal gas. Consequently, thepressure lowering rarefactions are reflected more quickly to the projectile in the
case of the real gas,

1'or x, < 00 chambered guns, dense real propellant gases will yield betterperformance than ideal propellant gases at the same p0  and To if the mass of gas0 is the same; this is true for the reasons discussed above, that is, the greater
fdp/p for the real gas. However, for a chambered gun having a fixed finite volume,the real gas propellant may or may not be superior to the ideal gas propellant,depending on whether the real gas fdp/p advantage is greater or not than the real
gas small 0 disadvantage.

REA', GAS

FASTER GUN =

IEAL GAS ,,r l . ..
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In this instance a calculation Is required to determine the better propellant.

For the constant base Pressure two-stage guns the required volumes of the gun may

be considerably smaller fbr the real gas than for the ideal gas to obtain the same
performance (see the discussion in Section 57).

Section 66

The Use of a Semi-Empirical Entropic Equation

To Approximate Actual Propellant Gas Behavior

In general, the gas thermodynamic properties are given in tabular form; in this

situation the fundamental equations of Section 59 may be solved numerically. This is

a long and tedious process. It has been found by Seigel 5
, 4 that the isentropic data

of dense real gases at temperatyres between 1500C and -150 0 C and pressures up to

6,000 atmospheres may be fitted accurately by a semi-empirical entropic equation of

the form

p 2)/1 (V - f) K (66-1)

where ,6 f , and K are functions only of entropy, This equation has been fitted

to nitrogen, argon, and hydrogen data at temperatures below 150 0 C (Reference 41). This

equation is similar to the Noble-Abel (covolume) equation of state used for many years

by ballisticians to describe propellant powder gas.

p/l' (v - b) = constant . (66-2)

The semi-empirical Equation (66-1) may be fitted to real gas data with much greater

accuracy than the Abel equation because of the fact that the parameters , , f , and K

may vary with entropy.

Evidence to date indicates that this equation may also be applied to propellant

ganer at high temperature as well as high density, Bjork' was able to fit high

temperature hydrogen gas data to the more restrictive equation

p0/n (v) = K' (66-3)

where n , and K' are functions of entropy, His fit covered the region of

hydrogen data from 100,000 lb/In2 and 12,000oK and below. (However, the effect of

molecular attraction ;'as not accounted for in the data.)

An advantage of the semi-empirical equation is that it may be conveniently applied

to the preburned propellant gun. Thus, from

p(8-2)/, 3 (V - f) = K

the Riemann function a may be evaluated as

o W(p/p0) / , (66-4)
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The characteristic equations which apply to the constant diameter chamhAr mnd harral

are, as before,

(u ± al + (u ± a) (u ± a) - 0 (66-5)

The sound speed a may be expressed as

a 1 (66-6)

where F is defined as (66-7)

v 0 -f

The quasi-steady energy and continuity equations relating the transition section exit
and entrance become

F Q.2 r2/ 1\-21
+' 2 Li+PtC' F ='r u2+ 71 1+ F (01)J (88-8)

Uoc[ F 0-o) J [ 71)j
These equations may be applied to the preburned propellant gun and solved

numerically by hand or machine, In such a calculation it is usually convenient to
make the equations dimensionless by dividing o , u , and a by ao , and dividing
p by po . It is interesting to note Appendix I, where it is shown that for the case
of a constant diameter gun (D0 /D 1 = 1), the above equations when expressed in

Lagrangian coordinates become equivalent to those of an ideal gas.

If the gas described by the semi-empirical entropic equation is shocked, it is
necessary to use an expression for the internal energy v (or the enthalpy), From
the thermodynamic identity ( v)s - p (66-10)

and Equation (66-1) is obtained

v = g + ýp(v - f)(,B- 2) (66-11)

where g is a function only of entropy.

One need at the present time is for tabular data for propellant gases such as helium

and hydrogen which include the non-idealities due to temperature and density. (Some

hydrogen data will soon be available from the National Bureau of Standards,
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Washington. DC, according to Dr. H.Wooleg.) These data are reauired. for examnle. in
order to design a constant base pressure, two-stage gun; in such a design, as discussed
in Section 57, the effects of the non-idealities are extremely significant in determining
the size of the gun, Toward this end the available hydrogen data of Wooley" has been
extended to higher density and the results fitted in Reference 100 to Seigel's Equations

(66-1) and (66-11). A plot of the fitted constants is given in Figure 45, Until more
reliable data are calculated, it is recommended that the information in Figure 45 be
used to approximate the behavior of hydrogen,

Section 67

Remarks on Expansion of Liquids and Solids

The criteria of driver gas performance applied above to gases may be equally well
applied to liquids or solids; such substances under huge pressures behave like very
dense non-ideal gases and expand in a "propellant gas" fashion, It is to be expected
that extremely large repulsive forces would exist within the liquid or solid when in

this highly compressed dense state. Therefore, the expansion even in a constant
diameter tube of a liquid or solid would be more rapid than such an expansion of an
idealized like substance, and the expansion in a chambered gun would be a-treat deal
more rapid than that of the ideal substance.

These views are borne out by a p-u plot of the expansion of high density water
(To = 26 0 C, and po = 100,000 atmospheres) in a gun, The plot, seen in Figure 41,

shows the pressure-velocity relation for water expanding in a gun as an ideal gas
(no intermolecular forces) and as real water.

f 100,000 IDEAL GAS WATER

WATERLIKE SUBSTANCE

atmospheres D /DI -I Po = 100,000atm
-M= 

ToT= 250 C

meters
0 s-ec

0 2,000 4,000

The effects of the repulsive forces are manifest and are, as expected, much larger
for the chambered than the uniform gun.

It is to be remarked that the isentropic behavior of solids and liquids has

often been approximated by the Murghnahan equation of state

4+ A = ) A (67-1)Pv
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whrnp A od nrc .... 1.. 'Itt•d ýioLnnLb. This is a very convenient

equation to use, since the expressions for the thermodynamic quantities are similar

to an ideal gas; thus

a 2 = n(p 1 A) (67-2)

P

"2
7 - a (67-3)

n - I

a
2

h = - (67-4)
n-i1

where a- and h are taken to be zero at a = 0 . To make Equation (67-1) more
flexible, the parameters A and n could be functions of entropy.

Finally, an isentropic equation of state could be written whioh would describe the
behavior of any substance, gas, liquid, or solid:

(p + A)(v - B)n = c

where A , B , c , and n are ftuctions of entropy.

' I e

*This equation was used to obtain Figure 41.
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PART XII. REMARKS CONCERNING PROJECTILE
VELOCITIES - PRESENT AND FUTURE

Section 68

The Selection of a Propellant

It is not always obvious which propellant is best to use. For example, a preburned

propellant gun having relatively small chamber volume may perform better with air than

hydrogen as a propellant.

1I 2500 FT/SEC
AIR

2000 FT/SEC
HYDROGEN 1>0

(This results from the fact that the larger G/M of air, weight of propellant to

projectile, being much greater than for the hydrogen, may offset the disadvantage of

air's low sound speed relative to hydrogen's. The calculation for a given case may

be performed using Figures 20 and 21. Of course, for relatively large chamber volumes
hydrogen becomes far superior.)

If high velocity is desired (say, about 15,000 ft/sec) the choice of propellants
is restricted to either heated hydrogen or heated helium. This results from the fact,
as has been pointed out, that the achievable velocity in a gun is practically limited

to velocities corresponding to a 'yu /a 0 equal to about 2.5 to 3 (or about 30 to 40%

of the escape velocity). Moreover, eo achieve the required a 0,. a two-stage gun is

necessary.

As between hydrogen and helium, hydrogen gives, in general, higher projectile

velocities relative to helium; its temperature is lower: this results in less heat

loss and less erosion,

One must, however, exercise caution in the use of hydrogen. It is explosive when

reacted with the oxygen in air. In addition, hydrogen embrittles many steels when it

is contained at pressures above 500 atmospheres; at these pressures materials (like

certain stainless steels) iot subject to hydrogen embrittlement should be used. In

the case of a two-stage gun the embrittlement problem usually does not occur since the

initial loading pressures are low and the peak pressures are only held for milliseconds.

If hydrogen is to be heated and maintained at high temperature, one must ascertain

that the containing vessel is not attacked by the hydrogen ("hydrogen attack").
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Section 69

Proposed Schemes to Increase Projectile Vclocities

There have been a number of schemes attempted in order to increase the projectile
velocities in guns. (See, for example, the survey made by Knapp' 3 .) A few will
be listed below:

(a) The Traveling Charge Gun or Rocket Projectile

In this scheme the projectile is propelled in part or entirely as a rocket. (See,
for example, References 67 and 68.) It carries a propellant attached to its back end
which burns during its travel in the barrel.

BURNING PROPELLANT

Up to date this scheme has not produced significant velocity increases due to the
difficulty of burning the propellant rapidly enough.

(b) The Addition of Energy Along the Barrel

At successive locations along the barrel energy (electrical or chemical) is put
into the barrel immediately after the passage of the projectile, (See, for example,
References 69, 104 and 111.)

BARREL

This scheme has not been successful to date,

(a) The Varying of Barrel and Projectile Geometry to Augment the Velocity

The use of tapered gun barrels, either sudden or gradual, has been considered with
various arrangements of projectile and projectile-sabot geometry,

Howell, using the scheme sketched on the following page (right), reports achieving
a velocity of 34,000 ft/sec consistently with a 0,02 gm sphere.
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(d) Use of Electromagnetic and Electrostatic Concepts to
Increase the Projectile Velocity

Various schemes to accelerate projectiles by electromagnetic and electrostatic
devices have been proposed and tried for at least the past fifteen years. (See, for
example, References 65, 66, and 109.) These include attempts to directly accelerate
the projectile electromagnetically, and also to indirectly accelerate the projectile
by accelerating the ionized propellant gas. To the present time the use of electro-
magnetic concepts does not offer much promise of producing velocities above 15,000 ft/see
for heavy projectiles. However, for small masses (less than O.Q1 gmn) these types of
accelerators have achieved velocities 72 up to 50,000 ft/sec and give promise of higher

velocities.

(e) Heating the Gas in the Pump Tubc of a Tiso-Stage Gun

Calculation Indicates a velocity gain if the helium or hydrogen gas in the pump
tube of a two-stage gun is initially heated, or heated during the compression stroke
(see, for example, References 48, 63, 64, 82, and 85). Results to date by Arnold
Engineering Development Center indicate that gains of 2000-3000 ft/sec have been
achieved in this manner at a projectile velocity of 30,000 ft/sea; however, Cablel0 ,
reports no gain by heating.

In summary, the various proposed schemes (a) through (e) may prove to be useful
in conjunction with a two-stage light gas gun to augment projectile velocity, None
of the schemes, it is felt, will increase the projectile velocity by more than 15%.

One must not overlook the possible use of shaped charge or explosive concepts.
Such concepts have resulted in the acceleration of -.n•il projectiles to very high
velocities (up to 50,000 ft/seo). (See, for eiulp'. tt.iorences 73 through 75,
Reference 84, and Reference 109.) These ooncevtt3 ea. nz ;j advanced with two
promising new schemes: the "implosion driven" .. .,I Glass

7
6 and the "gas

injector" of Godfrey 7 7 . (See also Reference 71.) 77. Ini ication of all of these
concepts the projectiles must be rugged to withstv,,r hh high pressures which occur.
A discussion of strength limitations on projectil'"s is given by Curtis' 0 .
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Presently Obtained Maximum Projectile Velocities

The maximum velocities obtained experimentally from light gas guns are shown in
Figure 46; this figure vpdates the information contained in a plot by Lukasiewicz'°,
The figure is shown in the following sketch.

1000 I I I , ,
NOL

CARDE NRL\ LIMIT
100 \ LINE

NOL . \ 1964

NOL \
1 10 NRL10\

TOTAL AMES.
PROJECTILENO

WEIGHT NOL

GRAMS 1.0 AEDC.

AMES" \
NRL

.1 RARDE "
AMES1

HO WE LL
.01. 0 100 20 30 40

MAXIMUM PROJECTILE VELOCITY

FT/SEC X 10-3

A listing of some of the velocity data used for Figure 46 with the pertinent gun
characteristics is given in Table I.

It is seen that the highest velocities are obtained for the smallest mass
projectiles. Thus, Charters"' has reported a velocity of 32,800 ft/sea for a
0..07 gm cylindrical model. A sketch of the two-stage gun used by Charters is shown
on page 155.

Howell has reported' 0 1 consistent 34,000 ft/sec velocities with 0,02 gm
projectiles using a two-stage gun with an augmenter technique"9. NASA (Ames) has
achieved a velocity of 37,060 ft/seo with a 0.040 gm proJectile' 1 3. The
performance of the NASA (Ames) light gas guns is shown in Figure 47.
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TABLE I

Maximum Projectile Velocities

Projectile In-Gun Barrel Pump Tune

Organization Muzzle Projectile Diameter Diameter
'Velocity Weight (in) (in)
(ft/sec) (gm)

Arnold 25,600 0.27 0.30 1.5
Engineering 24,800 0.41 0.30 1.5
Development 26,700 1,0 0.5 1.58
Center CAEDC), 29,900 1.12 0.5 1.58
Tennessee 26,100 1.5 0.5 1.58

Royal Armament 30, 100 0.08 0.25 1
Research and 27,800 0.106 0.25 1

Development 28,400 0.145 0.25 1
Establishment 27,000 0.2 0.25 1

(RARDE), Kent 26,200 0,24 0.25 1

England

US Naval 26,900 1.3 0.50 2
Ordnance 22,000 30 1.6 5
Laboratory (NOL), 19,000 77 1.6 5
White Oak, 17,800 141 2 5

Silver Spring, 15,200 265 2 5

Maryland 10,600 1170 4 5

Canadian Armament 25,000 0.20 0.25 1. 66
Research and 16,000 8-14 0.78 2.28

Development 17,600 55-75 1.5 4
Establishment 15,900 850-1000 4 10

(CARDE),
Quebec, Canada

US Naval 31,200 0,535 0.3 1.14
Resoarch 28,600 10 0.83 3.25
Laboratory (NRL), 24,500 13,54 0.83 3,25
Washington, DC 18,200 24.0 0.83 3.25

18,300 253 2,5 8,2
16,400 462 2.5 8.2

NASA 35,600 0.052 0,22 1.77
Ames Research 32,300 0.091 0.22 1.77
Center, 31,600 0.100 0.22 1.25
Moffett Field, 28,800 0.19 0.28 0.78

California 30,500 0.90 0.50 2.13
26,800 6,9 1.00 4.00
37,060 0,040 0.22 1,77
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4 MLUKl" MALB K
150 GRAM ANGLE TAPER BREAK VALVEPOLYETHLENE PISTON ••'

S1 •,0".22"

POWDER MWH2 " 35 to 100 PSI.

.07 GRAM PROJECTILE

Obtaining these high velocities with larger projectiles is certainly possible in
principle by scaling up the gun system. However, the cost and sizes involved may make
such scaling impractical. (Thus, the gun sketched would be 250 ft long if scaled up by
a factor of ten to fire a 70 gm 2.2 in projectile at 32,800 ft/sec.)

The plot of data in Figure 45 and in the sketch does not indicate the present lesser
velocity capabilitied of propelling fragile projectiles, for example, cones; such
fragile projectiles often must be saboted and designed to be aerodynamically stable,
Charters 2, has reported the repeated successful launching of cone models at
velocities up to 24,000 ft/see; these cones had half angles between 6B degrees and 12%
degrees. He also has launched saboted glass spheres at about 21,000 ft/sec.
T.Canning of Ames Research Center (NASA) has launched saboted aluminum spheres at
32,000 ft/sec,

Section 71

Future Possibilities

Although the increase of projectile velocities from guns has been rather
phenomenal in the last 20 years, it is predicted that the increase will continue and
that projectile velocities in excess of 60,000 ft/sec will be obtained for projectiles
weighing more than 0.1 gm by 1985.

FT FT FT
13,000 SEC 37,060 SEC 60,000 SEC

100,000

10,000,

PROJECTILE
VELOCITY 1000 I 0
FT/SEC 2 1

100 I

1300 1320 1945 1965 1985 YEAR



156

This increase in velocity will result from the following advances:

Ci) Application of the constant base pressure principle.

(ii) Improvement in the design and strength of projectiles and guns.

(iii) Perhaps some augmentation by one of the techniques discussed in Section 69.

I• m m m m mm mA
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APPFNf¥Y A*

Derivation of the Expression for the'Time
Rate of Change of a Quantity

Let P denote a quantity which depends only on position x and time t . This is

expressed by the equation

P = P(x,t) (A-i)

P is called the dependent variable; it depends on the valuos of x and t .hich

are thus called the independent variables. For every value of x and t , Equation
(A-I) states there is a determined, definite value of P This may be shown by
looking at an x-t plane as in the sketch.

B

A
x XA -- I

'A ta t

For point A the x and t values ar x A, and tA Corresponding to this point
is a value of P , that is, Pk , Similarly\ the x and t values of point B
determine a value of P B

Let it be desired to determine the change in P in going from point 1 to a point
2 very close (differentially close) to point 1.

x2 = x 1 + dxl

X1 It Xl

I L

t1  t + dt 1 = t2

The change in P in going from 1 to 2, will be designated as dP

dP lePenr Pd (A-2)

SThis elementary discussion is to be omitted by the reader fNoiar with partial derivatives,
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To obtain the change in P, one may think of starting at point 1 and proceeding to

point 2, noting the change in P during the movement. It matters not which path is

chosen to go from point 1 to 2; the difference dP will always be the same; this is

true because the value of P at each of the points 1 and 2 depends only on the values

of x and t at each of the points 1 and 2 by Equation (A-i). Hence, their difference

dP depends not on the path chosen to go from one point to the other, only on the end

points.

It is convenient to choose a path between points 1 and 2 which is first a constant

x line and then a constant t line, as indicated in the sketch.

¶ 2
x

X1

_t --
t2

The selection of this path allows a simple calculation of the desired dP . For this

path

dp P due to change in t + P due to change in (A-3)
at constant x at constant t ) - I

Let the first term on the right of the equation be found by the following procedure.

From a knowledge of P = P(x,t) , one could plot P as a function of t for a number
of given x's as sketched.

x = X7

* I x=xx

pl x = x1

t--

Let the constant xi line which is the path of interest be considered.

x= x

'II
I I

t t2 =t 1 +dt t

1 2
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Tte Dart C! thin linc tc .Z 6i", W id in Lhe diiierential segment between t =t 1  and
t =2 - This part of the line, being only of differential length, may be considered
a straight line of slope tan 9

x1 x

P2
P dP due to change in t

8with x constant xI

I I

ti t2

"Then from the sketch

dP due to change it t =tan (A-4)
dt

What Is tan 9 ? It is the slope of the x-equal-constaut line in the x-t plane, or

dP
tan L at constant x = x,

which is written by convention as a partial derivative,

tan .!. = (A,,3)

where, as indicated, the subscript on the partial derivative is sometimes omitted.
Equation (A-4) thus becomes

(dP due to change in t (A-6)at constant x Ttx

Similarly, it will be found by considering the constant t t 2 line that

(dP due to change in x\ ý(Tr

at constant t ),dx (A-7)
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Th,.& rI U (A-5) iur the total change in P in going from point 1 to

point 2 becomes

ap -ap
dP = -dt + - dx (A-8)

where the derivatives are evaluated at point I (or, equivalently, at 2 which is
infinitesimally close to 1). Equation (A-8) follows from, the fact that

P = P(xt)

and is often written directly in an elementary calculus course.

If the rate of change of P with time is desired, i.e., dP/dt , the eouation
(A-8) becomes after division by dt

dP BP dx BP+ - (A-9)
dt 5t dt Bx

This expression is meaningless unless dx/dt is specified; dx/dt is a direction
or velocity in the x-t plane. Therefore, if one desired the dP/dt in a direction

dx/dt equal to V (that Is, If going at a velocity equal to V) the expression for
dP/dt becomes

\tx - ?' v(A-l1)

dt

V may specify any desired velocity. For example, the rate of change of P with

time when moving in a fluid with a velocity V = 10 miles per hour is

Bp + 10 B (A-11)
ý~x -at Tx

dt~mt

If one desired the time rate of change in P experienced by a gas particle moving

In the flow, the value of dx/dt would be the velocity of the gas particle, u', ','.

Thus,

ý0 = + u• , (A-12)
\ddt)dl X t 7x

dt

Such a time rate of change when going along with a gas particle is thus the rate of

change for a 'material" particle or "substance" and, hence, is often termed the

"material" or "substantial" derivative,



161

d
Mjuilal ur iubU-,WLiai derivative -

dt

= + ua (A-13)Bt TX

For three dimensions the material derivative becomes

d a z B

- - + U-7+ - + W- (-4
dt t (A-14)

It is of interest to obtain the time rate of change of P along a disturbance path
which has a velocity equal to the particle speed plus the sound speed

dx
- =U a u (A-15)

dt

Then Equation (A-9) becomes

DP ýP BP

- = 5- + (u a) - (A-16)

where

DB
IF . 7 + (u ±a) (A-17)Dt •t x (

represents the rate of change along a disturbance path.
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APPENDIX 
B

The Derivation of the One-Dimensional
Unsteady Characteristics Equatoi, s

The gas flow in a constant diameter tube will be examined. Let a layer of gas of
differential length dx be considered. Across this layer the gas thermodynamic
properties and gas velocity all change by differential amounts as shown in the sketch.

GAS LAYER hdx -~4
p I p+ dp
U u+ du-- time t

P A+ dp

"pdx = mass

time rate of mass increase = pdx
"zt

These differential amounts are all small changes due to a change in x at a given t
thus

dp = (0p/0x) dx

du = (Bu/Zx) dx (B-1)

dp =( pix) dx

and the differential change in products may be similarly expressed

•(pu)
d(pu) = - dx (B-2)6x

The continuity eQuation applied to this layer is

pu pu-+d(pu) + p u+ dx + ýp

or

au *p 6p
P x+u7-+F 0 (B-3)

Bx ~x i
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The acceleration of the gas layer is

du Du au
- + U -

dt Tt •x

where d/dt represents the "material" or "substantial" derivative (see Appendix A).

The momentum equation may thus be written in terms of the acceleration as

" p -d P-(p + dp) p +- L+- dxl

or

Bu Bu aBp

7+ UT- Dt 
(B-4)

The assumption is now made that the process occurring in the tube is isentropic,
Thus, whereas, in general,

p p(p,s) (B-5)

this becomes

p p(p) for s = constant (B-6)

The sound speed a and Reimann Function o* are defined by

a 2 = (p (B-7)

do,- *(dp) (B-8)

or, from (B-7),

do, dp (B-9)

For the constant entropy process assumed here the equations become

a 2 _s constant (B-10)dp

a 1
do, -dp - dp , s constant (B-11)

p ap
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Euuation MR-I11 may hA fra fpmad tn

dp = p do- (B-12)
a

dp = ap do, (B-13)

Equation (B-12) states that a differential change in p is equal to p/a times a

differential change in o*. One may thus write

ap p -60-
-- = - •(B-14)

Tt a- Tt

•p _p p'-

Tx a Tx

Similar reasoning yields

""x a x (B-16)

It is thus seen from these three equations that the gradient in the Riemann Function
o may be substituted for gradients in p and p If this substitution is made in
the continuity equation (B-3) and the momentum equation (B-4), the following set of
equations results:

•u •u •o-
0 + u B+ a = 0 (B-17)

7t Bx Bx

-+u + = o (B-iS)
~t x ~x

By adding and subtracting equations (8-17) and (B-18) the "characteristics equations"

are obtained,

7 (u +a) + (u +a)Tx (u +a) 0 (8-10)

.T- (u-0) + (u -a).-(u-o) 0 (0-20)

With the notation

D
- -- + (u ta)- (B-21)
Dt t Tx



165

these eauatinng wtv hP wrifa

D
- (U ±o 0 (B-22)

Dt

The characteristics equations (B-22) are equivalent to the continuity and momentum
equations provided the gas pressure is determined alone by density (as for an
isentrope).
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APPENDIX C

The Meaning of the Characteristic Theory

(a) The Meaning of the Characteristic Equations

The meaning of the characteristic equations derived in Appendix B becomes clear
from the results of Appendix A. According to Appendix A, the time rate of change of
a quantity P along a path of slope u + a is

dx t + (u + a)(C-)
along Lt u + a

If P is assumed to be the quantity (u + o)

ýd(u + 0) '(u +o-) B(u + r)

dt dx Bt + (U + a) x (C-2)

along •-- u + a

The characteristic equation thus states that the time rate of change of u i a along
a path of slope u ± a is zero. This in written for conciseness as (see Appendix A)

= 0 (0-3)
Dt

The characteristic equations state that within the gas there is no change in the
quantity u ± o to an observer traveling with the velocity u ± a . Equivalently,
one may state that along a characteristic line in the x-t plane (defined by a slope
u ± a in this plane) the quantity u ± cr remains constant. Therefore, on the x-t
plane two sets of "characteristic lines" are obtained: one with the slope u + a ,
along which u + c- is constant, the other with the slope u - a , along which u - Cr
is constant. The two sets intersect and form what is known as a characteristic net.

u - nex u + a lines
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These characteristic lines may be interpreted as the paths of disturbance waves,
since as one goes along a characteristics line, one travels at the same speed as an
acoustic disturbance would, that is, at the local sound speed relative to the movling
fluid. (See Equation (6-4) of the main text.) Thus, the characteristic net is quite
naturally viewed as a net of interacting disturbances. The number of disturbances to
be considered is arbitrary, depending only on the number of characteristics one desires
to examine.

To make these ideas clearer, consider the case of an isentropic flow of a gas in a
tube. For each and every point in the x-t plane which describes this flow there
exist corresponding values of pressure, gas velocity, temperature, sound speed, etc.
Let the area on the x-t plane be divided into an arbitrary number of squares; in each
square let the value of "u + a" which exists at the middle of each of the squares be
written as shown in the sketch, where numerical values have been written for illustration.

6 5 4 2 0

X 7 5 4 3 2 u +a value

8 6 5 4

9 7 6 6 4

Let any mid-point of any square in the x-t plane be selected. From that mid-point,
draw within the square a line of the slope equal to u + a in that square. When the
line intersects the adjacent square, draw a new line in the adjacent square of slope
equal to u + a in the adjacent square, Continue this process.

SStart

X 7 5 3

8 6/ 5 4

9 6 6 • value of U + a

The path traced by the above procedure is a line of slope u + a , It may be made
as smooth as desired by decreasing the size of the squares. It is a "u + a"
characteristic line and along it the quantity u + a remains constant, This
procedure may be repeated to yield as many u + a lines as desired,
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1 -- -/
'C0

Along each u + a line, u + a is a constant, in general, a different constant for
each line.

A like procedure could be applied to squares containing values of u - a within
each square; this would result in u - a lines.

Start1' -
S-6 -I 5 -3 -1

-5 •-3 -2 •-1 u - alIne

On each u - a line the quantity u - or is a constant.

As a result of the property that the quantity u ± ar remains constant along the
disturbance paths of slope u i a , the behavior of the gas and. projectile in constant
diameter portions of a gun can be found by using the characteristics net; in general,
a numerical procedure Is necessary. In some instances an analytic solution occurs, as
for the case of the simple wave region discussed in Appendix D,

4
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APPENDIX D

The Simple Wave Region In a DG/Dl = 1, PP Gun

Let the relevant case of a preburned propellant gun of Do/Dl: 1 be considered.
At the instant the projectile begins to move, a "Ii - a- disturbance is sent back
towards the breech. This disturbance travels at a speed equal to -an, since it moves
at a speed of u - a into a gas at rest with sound speed ao

X

PROJECTILE PATH

t-b

FIRST "u-a" DISTURBANCE WAVE

a 0 00 dxdt0 a-a •.u a=- aO

During each succeeding instant that the projectile moves, it sends back toward the
breech u - a disturbance waves, In the sketch the projectile path is represented as
A-B-C-D-8,

X E

C

u-a DISTURBANCES
FROM PROJECTILE

To determine more concerning the behavior of the gas let the d&u + a" characteristic
lines which extend from the region A-O-L be considered. These are shown dashed in the
sketch.
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tT
x A A

••IS/ u +cr= cro

REGION /
RESTO `0

LT
0 t "--

The region A-O-L is a "rest" region in which the gas has been undisturbed.
Consequently, in this region u = 0 and o =o I For any u + a characteristic
which extends into this region, e.g., characteristic R-8-T, the sum of u + o is
therefore

u +- = 0 +o-0 = 0

Moreover, according to the characteristic equations, this sum is constant along the
entire characteristic, Thus, for all the u + a characteristics which extend into
the rest region A-O-L,

u +o" 0, r (D-1)

Hence, this equation, which is true for all u + a characteristics in A-0-L, applies
to the entire region into which these characteristics exist, the region A-O-L-E, where
E is the point where the first reflected disturbance reaches the projectile.

x PROJECTILE PATH

U + 0" 0"0
E

A a- 0-<0'

/0 "/, ," FIRST REFLECTED
/ DISTURBANCE t --

Li 0
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TI ,9~iuu A-O-L-, is termea a "nimple wave" region. It occurs because all the
u + a characteristics within it extend into a region of constant state, in this case
a rest state. The entire region is described by the equation

u + 0 = 0,0O

It is to be noted that the u + a lines in the region A-L-E are not straight lines
but are curved; in the rest region, however, the u + a lines are straight lines
with slope equal to a0

SA-O-L-E ISE

S IMPLE WAVE
REGION

SLOPE OF A VARYING SLOPE
u+a LINES A IN A-L-EIN A-O0-L • ,/•/

0 L

The u - a characteristics each have u - o aqual to a constant along them. For
example, for the characteristic B-M in the sketch

u- = uB -as constant (D-2)

X
B

A J_

N

0 L M

Let the portion of this characteristic B-N which is in the simple wave region be
considered; for any point on this portion, e.g., point J, Equation (D-2) becomes

u 1 - u B-c constant (D-3)
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But since this point is in the simple wave region

uJ +Or - cr0  (D-4)

From Equations (D-3) and (D-4) it is found that along the u - a line B-N within the

simple wave region,

u constant = (aO + uB- oe)/2

cr constant = Lao - (uB - o-B)]/2

and, hence, the other thermodynamic properties a , p . p , etc., are each constants,
The slope "u - a" is therefore a constant. Thun, the line B-N is a straight line. By

the same argument all the u - a lines originating at the projectile are straight
lines within the simple wave region.

x u - a LINES IN SIMPLE E -.-

WAVE REGION ARE
STRAIGHT LINES .

ACURVEDLu - a LINES

0

l L
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APPENDIa

The Numerical Procedure to Determine

The Behavior in a PP Gun with Do/Di = 1

The following equations will be employed

(u +) + (u + a)- (u -•) = 0 (g-l)

( -+ u a u0 (9-2)

u A
dt= p (E-3)

p = p(p) for the given entropy (E-4)

a = a(p) for the given qntropy (E-5)

- = (p) for the given entropy (E-6)

The method used to obtain the last three isentropic relations from real gas thermo-
dynamics data is discussed in Reference 5; these three relations are in graphical form.
An x-t diagram is employed as a visual aid In the solution, The procedures outlined
in (i) and (iii) below are essentially those described by Heybey3 , for a Noble-Able
gas. (See also Foa l s and Rudinger' 1 ).

(I) Determining the conditions at an unknown point
within the characteristic net

It is assumed that the characteristic lines are composed of chains of connected
straight segments; these straight segments, which connect points of the characteristic
net in the x-t plane, replace the actual curved lines, (However, the solution way
be made as accurate as desired by the use of smaller steps,) Thus, the characteristic

net consists of quadrilaterals, the sides of which are parts of characteristic lines.
If the conditions (u, a, x, t, p, a) at the points A and B (see sketch) which are
diagonally opposite corners of one of these quadrileterals are known, then the
conditions at point C, one of the other two corners of the quadrilateral, can be
determined from the equationa listed above.

KY characteristic equations (E-1) and (E-2)

uc -c• u -oA uc +c = 8
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Therefore,

AA

(E-7)

+ ~CV (u u 0

%o = "l( -u + +U

By Equations (E-4), (E-5), and (E-6) the velocity of sound and the pressure at C
ag aid PC may be determined from O.c . The slopes of lines A-C and B-C are taken
as arithmetic means of the slopes at A and C. and the slopes at B and C:

(slope) = SA = [(ua - aA) + (uc - ao)]

sa = f(uB + as) + Nuo + a)]

Then the straight lines through A and B intersect at C with coordinates

S(XB, - Ssts) - SB(a A - SatA)
SA - S5

(E-B)

to (XB - SBtB) - (XA - SAtA)
SA - SB

Thus, all the conditions (u, o', x, t, p, a) at C are known from the conditions of the
two points A and B.

A special case of the above is when the unknown point (here CI) is on the t-axis
(at the breech). In this case conditions at only one adjacent point need to be known.
From then uct 0, Xci =0, and

O' = (CA' - UA')

SA' = i (uA? - aAI - act) (E-9)

to? = tA -
SAI
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(ii) Determining the noint at whirbAe' flie r- e d
wavelet reaches the projectile

By usc of the simple wave equaLiuns, the piston path can be obtained until the
first reflected wavelet reaches the projectile. However, this point is unknown and
can be found by the procedure described here.

f 0

E

_ _

C 3

L XM

Point E in the sketch, at which the first reflected wavelet reaches the projectile,
is the intersection of the projectile path as determined by the simple wave equations
and the first wavelet A-L-E. From point A (the initial projectile position, x = -xo)
the first wpvelet's path to the breech may be drawn immediately, since it is a straight
line of slope equal to u - a = 0 - a0 = -a 0 , The intersection of the first wavelet
with the breech is at time equal to x0/aO ; all the conditions at L are known

0 = o , u = 0 , x = -X0 , t = xo/ao I a = a I

Now a point B on the projectile path adjacent to A should be selected*. The conditions
at B are known from the simple wave equations and Equations (E-4) through (E-6).
Therefore, the conditions at 1 (the intersection of the reflected wavelet ascending
from L and the wavelet descending from B) may be obtained by the method described
above in (i). Similarly, from C, a known point on the projectile path adjacent to B,
and from point 1, the conditions at point 2 may be calculated. In this manner the
reflected first wavelet is continued until it intersects the projectile path (at E).

The spacing of point B from A (and 0 from B, etc.) is such that any smaller spacing would
yield the same results within the accuracy desired.
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(Iii) ........... t .... ,Z&'1'v puih ajier the first refiectton

The characteristic net must be continued in a step-by-step fashion to obtain the
piston path and gas behavior after Lhe first reflection point at E. Point M at the
breech is obtained by the method outlined in (I), Point 4 is obtained from the
conditions at 2 and M, and so on up the reflected wavelet M-4-5-6. From the conditions
at point E on the projectile path and from the point 6, the desired point G may be
obtained by an iterative process. The iterative process demands the following:

(a) Point G is the intersection of a line through E whose slope is the average of
the slopes at E and G (on the line E-G), and a line through 6 whose slope is the
average of the slopes at 6 and a (on the line 6-0). Thus,

slope E-G sE = 1/2 NuE + u0 )

slope 6-0 U s = 1/2 (u6 +af + uo +a o)

(b) Newton's law applied to the projectile is satisfied in the interval of time
between E and 0. Thus,

U0  - u s A(P Q +-p )A

to -~ M

The iterative process is illustrated below,

As a first approximation the time at point 0, t") , is obtained as the intersections
of a line from point E with slope uE and of a line from point 6 of slope u 6 + a6

is provisionally assumed equal to a. and the first approximation of the velocity
at point 0 is found from

nA SU + cta' - t.) A

MI
Then

5(2) =U a
2

C2) :(u 6 + a 6 ) + (uM1) + &(1))

2

tl2) - Cx- s(2))t) (x5 -s(2) t( )

0 S(2) _ CS2)
E 6

u,(,2) 2 U.+(() y P 2 M

a(6) = ( 0 2
a U6 + G u2
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Do2) and au2) are obtained from Equations (E-5) and (E-6);

BE() = uE + u(2) (U + a.) , (U2 +

S 2 2

and so on. The process is quick]y converging. If a counter-pressure is assumed actingon the proJectile, the proceduri. .!y be slightly altered to account for this.
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APPENDIX F

The Classical Approximate Solutions to the

Internal Ballistics Problem

(1) Lagrange's Method of Assuming the Density to be a
Function of Time

As previously mentioned, the classical "Lagrange Problem of Internal Ballistics"

is the problem of what occurs when a projectile initially at rest in a constant cross-

sectional area gun is propelled by a propellant which burns instantaneously. The
process is considered as one-dimensional, frictionless, and adiabatic. Lagrange"'

initiated the study of this problem in 1793, when he presented an approximate solution
to the problem. He assumed that the propellant gas density p was a function only of
time and not of distance x , i.e.,

p = p(t) . (F-1)

With this assumption, by use of the continuity and momentum eQuations, the following

relations are derived (as shown, for example, by Corner"6 ) for the DO/D - 1 gun

u x+x 0- - + (F-2)
Up Xp + x0

a linear velocity distribution.

P 0 G o•

pp

a parabolic pressure distribution.

I +- (F-4)
pp 2M

a constant ratio between pressure at the breech and projectile.

-= I+-(-5

pp 3M

kinetic energy of gas .(. u)(F'-6)

2Ga~~ xU y (L-7)U p y - )
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•,u.c, Liht ttbsumption p - p(t) leads to the condition of a parabolic pressure
distribution, with pressure ratio for the gas at the breech to that at the projectile
a constant; obviously, this is not true for thA Lagrange problem at the start when the
pressure is uniform in the chamber. It is also noted that the projectile velocity
becomes infinite for infinite G/M end infinite travel; this is, as known from the
discussions of the main text, not true.

Nevertheless, this approximation accounts somewhat for the ga. inertia, and for the
case of low GIM (and, hence, low velocity, and many reflections of the first disturbance
from the projectile) is a convenient approximation.

(2) The Special Solution of Pidduck and Kent

After Lagrange had initiated the study of the "Lagrange Problem", Hugoniot 5 °
extended Riemann's theory of waves of finite amplitude and applied it to the problem;
he solved it to the point when the first expansion disturbance shed by the projectile
reached the breech. Gossot and Louisville went still further and followed the first
expansion disturbance after it had been reflected from the breech back to the projectile.
The culmination of this method of attack (which did not use the method of characteristics)
was the complete solution as far as the first disturbance traveling back and toward
the breech for the third time by Loves' in 1921,

Love replaced the system of hyperbolic quasi-linear partial differential equations
which describe the problem by a single partial differential equation of second order
for one single dependent variable and solved it separately for each wavelet. His
solution contained lengthy and involved computations and was valid only for a
Noble-Abel gas (with isentropic relation p(v-b)V = constant) whose ratio of specific
heats was of the form

2n + I

2n - I

where n is an integer.

Pidduck, noted, from the results he had calculated with Love's equations, that the
ratio of the breech pressure to the pressure of the gas directly behind the projectile
oscillated as shown in the sketch,

,•Pbreech

Pprojectile

Pp
LIMITING VALUE

Nintime
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This oscillation is a result of the lowering of the pressure occurring aa the first
disturbance reflects back and forth between breech and vrojectile. Pidduck found that
the oscillations damped out and that the pressure ratio approached a certain limiting
value. He then deduced a "special solution" to the governing differential equations
which indeed did yield the condition that the ratio p./ppV is a constant, not only in
a limit but at all times. This solution, an analytic one, did not satisfy the initial
conditions of the Lagrange problem; the initial conditions for the special solution
were a non-uniform distribution of density and pressure, Pidduck and all later
investigators have suspected, but not proved, that the accurate solution to the

Lagrange problem approached the special solution in the limit of large travel.

The special solution has also been derived by Kent 5 2 and by Vinti and Kravitz 5 •.
(See also Corner' 6 ). It is often referred to as "The Pidduck-Kent Special Solution"
or "Pidduck Special Solution". The essential results are as follows.

U x + X0 8
-- = ~ (F-Sl)
up Xp + x 0

px.-x• - --

(1 - •) Y1 . (F9- j
Ppp

or, for a 'y 1 gas,

Sf-fio et (F-10)

pp

where go and a depend on o/M and Y9, as shown below and plotted in Figure 44.

- a0 (1 - ao) ( - Z'0.4,)Y" du (F-11)M 9/ 1

or, for a y = 1 gas,

G e e-c %M= 2 e 0 jf e dA (F-12)

For small G/M, go may be approximated as

a0(7-1 I y a I I I 1aVao +/-IG [1 + __ N ), + .... .3'
0 M(25)ý 6Y 124 1807 ~M~

/



181

"It., pujouLilu vtiucity is obtainen as

-2 J•a •0

2aO~a +/X D (F-14)

and, for y 1,

U0  2a 0 v (Og XD + X0\

-2aov%- [Oloe M)F-5

where

p (A'-18)

a0

Thus Figure 44 may be used in conjunction with Equations (F-14), (F-15), and (F-16) to
to calculate the projectile velocity for any gun, even a chambered gun, although the
solution was derived for a D 1/Dl = I gun. Then, for the chambered gun, xo should
be replaced by xoAo/Ai in the above equations.

The above results may be deduced for a Do/Dl 1 gun with a covolume propellant
gas, and have been applied as an approximation to even the case of a chambered gun
with a covolume propellant gas. In the chambered covolume case the sound velocity
a 0  in all the equations above should be replaced by V5iT = o-Vo(vO - b) and x0
should be replaced by (AoX 0 - bG)/A,

It is found that, when G/M becomes infinite, Zo approaches one. In this case,
for the Do/D = 1 gun, the projectile velocity becomes, from Equation (P-14),

up ~ =-/ Y l (F'-17)

which, for infinite travel distance, becomes equal to 2a&o/(/- 1) this is, as it
should be, the escape velocity for a Do/D 1  1 , x0  0c gunl

* However, the same result for escape velocity is arrived at for a chambered z, c gun,
for which it is incorrect.
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, L... . . .. j
1 

LILIU DO i gun in wnicn initially there is a
pressure gradient in the propellant gas; the Lagrange ballistics problem (the PP gun
oriblem), however, assumes no gradients initially. Pidduck and later investigatnrs

S'cted, but never proved, that the special solution approaches the acurate solution
.ie limit of large travel. The results of calculations made on the electronic

;•puting machines (see Section 28) seem to confirm this suspicion.

The computed results indicate that, indeed, the special solution is an amazingly
good approximation for the finite chamber length PP gun for any D0/Dj ; this is true
for small projectilA travel as well as large travel. A comparison of the special
solution results with the computed results for the PPIG gun is shown in Figure 21.

A '.
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APPENDIX 0

Equations for a Shock Moving into a Gas
at Rest in a Closed End Cylinder

Let a shock moving into an ideal gas at rest be considered.

S1

P 21P2, u2"' b u=O P 1,Pl, 0l 1

The equations describing this situation are summarized below (see, for example,

Glass'1O, 112 or Lukauiewioz' 1 4).

1 + '/I 1a ) ()1 L 2+. +i(2

202

i/ +'Y a J +P 
(-2

1Y + I P2

+ 

/

VP' '2 - ,
Pi aY + I + V

a!

al 1 y1  i/s (-8

- 2 1- 11 ( 0. )

2,7J+1 8 1 +p

"r 2I F YII + 1 P 2 
( 0 -7

g+I
I 1 -1p 1
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- -2 1 +P + 
-8)

2

a s 2-, P2 [? 2 Yp + 1
PI P+ / I

a - 2 aa,)

1R

Sl T,- I+

or

-, = - 1 ,_. ý (1-10)

TI. • + L1 P l+l)gf U0

If the shock is a strong one (i.e., P2/pr >> 1 's1I/at »> 1) these equations
become

P2 +1 (L2  (6-11)

2 Kai)

2- (j 
(0-12)

+ i

P 2  + I (0-13)

2 n y1 2  (G-14)
T1  L + I)1

V1CY1 -1 /U 2 '\ 6-5
2

22 +I (G-16)

+1+ P1

2 (M-19)
/j 7+1I
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When the shock reaches the end of the tube it is reflected as shown -in the sketch.

S2

P2' P2, U2 =0Y

P3 ' P 31 03

By superimposing the velocity u2  to the left, this becomes the case of a shock
moving into a gas at rest.

S2 + U2

P21 P2' u= 0 u

P3 , P3, 13

The following equations apply to this reflected case:

+ 1 p 2  1

p2  P1 
(0-20)

P2 P2 1 -1 +

B - (0I-21)a3  ~2y
r- 

1

P 3  7- 1 P (.22)

P 2  Y+1 + V3
)' - 1 p2

TL = / (G-23)
T P2 /P 2
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APPENDIX H

The One-Dimensional Unsteady' Characteristic Rqtntiong
for the Case of Gas-Wall Friction and Heat Transfer

Here is irreversibility and inhomogeneity introduced by the gas-wall friction and
heat transfer are assumed to be of a magnitude such that p , p , s , u , etc.. may
still be defined for each gas layer at position x and time t . Also, it is assumed
that the second law equation, Tds = du + pdv , is valid within the gas layer. Then,
with F the gas-wall friction force per unit mass, the force equation for the gas
layer becomes

4 FpAdx
-au au _ 6p

dx -; AS

LAYER

The continuity equation and the gas law are

6p "u Dp
u- p- +- = 0 (H-2)

Dx Bx 'at

p p(ps) (H-3)

These equations may be manipulated to yield the following characteristics equations:

Du lp DP I
S_ = ±F- (H-4)

Dt ap Dt apý,, 7t

where a is the sound speed and D/Dt is defined as

D 'a
- -- + (u + a)- (H-5)
Dt t x

and d/dt is

d
;- - + U- (H-6)

dt xt •x

To obtair the entropy change for each gas layer, use is made of the first law
equation rpplied to the gas layer.

d ....- +q 
(H-'7)

dt p Bx
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where v is internal energy and q Is the rate of heat transfer into the layer per
unit mass. The second law applied to the gas layer is

ds dv p dp
T d = y- pd (H-8)

dt dt p 2 dt

Equations (H-1), (H-2), (H-7), and (H-8) may be combined to yield

dsT = Fu + (i-9)
dt

which is Equation (39-6) of the text.
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APPENDIX I

The Equivalence of the Ideal and the Abel Equations
of qtmte in Application to the Lagrange Ballistic Problem

(Doi/D1  0 1 :

In Reference 54, Heybey discusses the significant parameters of the Lagrange

Ballistic Problem. This classical internal ballistics problem is the problem of what
occurs when a projectile initially at rest in a constant cross-sectional area gun is

propelled by a propellant which burns instantaneously (thus initially establishing a
uniform high pressure gas behind the projectile). This process is considered as one
dimensional, frictionless, and adiabatic. Heybey demonstrates that, for a given ratio
of propellant gas mass to projectile mass (G/M) and a given ratio of specific heats
(/) the dimensionless projectile motion is the same function of dimensionless time
for the Abel gas as for the ideal gas. However, the characteristic net (the interior

of which must be used to obtain the behavior of the gas behind the projectile) is

different for the two cases in the Eulerian coordinate system which Heybey uses; a new
characteristic net must be calculated with the Abel equation of state for each value

of the covolume (see Figure 6, Reference 54).

It will be shown here that if Lagrangian coordinates are employed to sUIve the
Lagrange problem, a seemingly natural choice, the use of the Abel equation of state is

equivalent to that of the ideal equation of state; the two cases become oiie ir - "rw

characteristic net,

It can be shown (see Courant and Friedrich"5 ) that in Lagrangian coordinates the

characteristic equations describing the isentropic unsteady one-dimensional flow are

- (u±cj ±k (u ±) = 0 (I-i)

where H x(HOt) pdx (the mass per unit area of gas from a given point in the flowwhere H 47(0. t) tefo

to the breech of the gun) and k is the acoustic impedance of the gas, pa . The
dimensional variables become dimensionless by the following transformations:

(y -i)u (y - 1)a

-2v o ' •RT0 (/-1) Po

-f p0Ax (t - l)a = P (1-2)

-GYRTo-2/(Y-I)] p2 '

t ff
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With the use of (I-2) the characteristic equations become

Rt(Ui:L&) i k-u TH - 0 .(1-3)

Newton's force law applied to the projectile becomes

- - (1-4)dt

The isentropic law yields, for both the ideal gas and for the Abel gas, the
following relations:

(y + 1)

27 - 2
?-p

_- - I)
-~2Y

The initial conditions for the Lagrange problem are

H= 1, t 0 at the projectile
(1-6)

H= 0, t 0 at the breech

The entire behavior of the gas and projectile are determined by the dimensionless
equations (1-3) through (1-6). A characteristic net on the H-t plane can be
calculated from the equations. Since these equations desoribe both cases (the ideal
and Abel gas cases), only one solution for a given G/M and y is necessary. The
ideal and Abel gases are equivalent in this system of coordinates in application to
the Lagrange Ballistic Problem.

PROJECTILE PATH

11.0

H 0 L

0
O0 -1 --

27'
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A characteristic net in the Hf-t plane for the Lagrange problem is shown in the
previous sketch.

It is interesting to note that the equation for the first reflected impulse (B-C)
can be obtained analytically. This relation is

2-Y 27 M

A comparison of the two propellants initially is shown in the sketch.

G M

Abel Gas

A k-- xol, -5 SAM >up

SIdeal s

G

It is important to remember that, with a chambered gun, the performance of the
Abel and ideal gases are no longer equivalent. Because of the increased enthalpy
(or f dp/p) of the Abel gas relative to the ideal gas, the Abel gas gives better
performance for the same G/M.
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APPENDIX J

Equations for the Thermodynamic Properties

of an Isentropically Expanding Ideal Gas

For an ideal (or perfect) gas the thermal equation and isentropic equation are,
respectively,

R
p = pRT = p-T (J-1)M

p = p7 (p/po') (J-2)

where the subscript "0" indicates an initial state from which the gas expands. From
these equations the following relations may be derived for the isentropic expansion of
the ideal gas in terms of the Riemann Function a (defined as do = (dp/ap)6):

a = (-i)o1/2 (J-3)

h = a 2 /(y - 1) = (- 1)0.2/4 (J-4)

p = po(O./o,7)2Y/(7" 8 ) (J-5)

P = Po(al/0ro)2/10/) (J'6)

ar The expressions for ap and p as functions.of p during the isentropic expansion

Y+1 Y+1

PC_._ (J-7)
R ~ a p0D D

I I

RT 'P0' . (J-8)
RT :7o (po)
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GENERAL REFERENCES

The number of papers published on the subject of high velocity gas guns within the
past twenty years is multi-tudinous. Dr. Glass, in Reference 24, recently has made a
survey of constant diameter preburned propellant guns. It is suggested that reviewing
the proceedings of the following two symposia, which are each held every year to two
years, will quickly familiarize one with the field:

(1) Symposia on Hypervelocity Impact, sponsored by the US Army, US Air Force, and

US Navy. The last symposium was held in Tampa, Florida, in November 1964.

(2) Symposia on Hypervelocity Techniques, sponsored by various groups. The last
symposium was held in Denver, Colorado, on March 1, 1964.

The predominant number of publications in the field of high-speed guns--as been
produced by the following Laboratories in the United States:

(1) US Naval Research Laboratory, Washington, DC.

(2) Ames Research Center, NASA, Moffett Field, California.

(3) US Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland.

(4) 0S Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland,

(5) General Motors Defense Research Laboratories, General Motors Corporation,
Santa Barbara, California,

(6) Arnold Engineering Development Center, Arnold Air Force Station, Tennessee.

(7) Denver,Research Institute, University of Denver, Denver, Colorado.

(8) AVCO Corporation, Wilmington, Massachusetts and Everett, Massachusetts,

(9) Armour Research Foundation, Illinois Institute of Technology, Chicago, Illinois,

In addition, the following Laboratories outside of the United States have been

active in this field:

(1) Canadian Armament Research and Development Establishment, Quebec, Canada.

(2) McGill University, Montreal, Canada.

(3) Royal Armament Research and Development Establishment, Fort Halstead, Kent

England.

(4) Institute Franco-Allemand De Reoherches De Saint-Louis, Prance.

(5) LRBA, Vernon, France.

A search of the high-speed gun literature under the names of these Laboratories
will uncover much of the publications in the field.
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